CloudPin:公共云网络中共享带宽包流量异常的根源定位框架

Shize Zhang, Yunfeng Zhao, Jianyuan Lu, Biao Lyu, Shunmin Zhu, Zhiliang Wang, Jiahai Yang, Lin He, Jianping Wu
{"title":"CloudPin:公共云网络中共享带宽包流量异常的根源定位框架","authors":"Shize Zhang, Yunfeng Zhao, Jianyuan Lu, Biao Lyu, Shunmin Zhu, Zhiliang Wang, Jiahai Yang, Lin He, Jianping Wu","doi":"10.1109/ISSRE52982.2021.00046","DOIUrl":null,"url":null,"abstract":"Due to the sharing nature of public cloud, most of the cloud services use a sharing bandwidth package (sBwp) model to conduct inbound/outbound communication. The sBwp model allows users to purchase a sharing bandwidth for plenty of virtual machines instead of purchasing bandwidth for each virtual machine separately. The advantage of sBwp is that it can provide users with convenient configuration and lower economic cost. However, the sBwp model brings new challenges for operators to localize the root cause of traffic anomalies of a sharing bandwidth, especially for a globally distributed large-scale public cloud with millions of users. In this paper, we first formalize the sBwp problem on the cloud and propose CloudPin, a root cause localization framework for this problem. Our framework solves all the challenges by employing a multi-dimensional algorithm with three sub-models of prediction deviation, anomaly ampli-tude, and shape similarity, and an overall ranking algorithm. Evaluations on real-world data, from one of the world-renowned public cloud vendors, show that our algorithm precision reaches 97.8% for the top 1 of the ranking list, outperforming multiple baseline algorithms.","PeriodicalId":162410,"journal":{"name":"2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CloudPin: A Root Cause Localization Framework of Shared Bandwidth Package Traffic Anomalies in Public Cloud Networks\",\"authors\":\"Shize Zhang, Yunfeng Zhao, Jianyuan Lu, Biao Lyu, Shunmin Zhu, Zhiliang Wang, Jiahai Yang, Lin He, Jianping Wu\",\"doi\":\"10.1109/ISSRE52982.2021.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the sharing nature of public cloud, most of the cloud services use a sharing bandwidth package (sBwp) model to conduct inbound/outbound communication. The sBwp model allows users to purchase a sharing bandwidth for plenty of virtual machines instead of purchasing bandwidth for each virtual machine separately. The advantage of sBwp is that it can provide users with convenient configuration and lower economic cost. However, the sBwp model brings new challenges for operators to localize the root cause of traffic anomalies of a sharing bandwidth, especially for a globally distributed large-scale public cloud with millions of users. In this paper, we first formalize the sBwp problem on the cloud and propose CloudPin, a root cause localization framework for this problem. Our framework solves all the challenges by employing a multi-dimensional algorithm with three sub-models of prediction deviation, anomaly ampli-tude, and shape similarity, and an overall ranking algorithm. Evaluations on real-world data, from one of the world-renowned public cloud vendors, show that our algorithm precision reaches 97.8% for the top 1 of the ranking list, outperforming multiple baseline algorithms.\",\"PeriodicalId\":162410,\"journal\":{\"name\":\"2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE52982.2021.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE52982.2021.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于公有云的共享特性,大多数云服务使用共享带宽包(shared bandwidth package, sBwp)模型进行入/出站通信。sBwp模型允许用户为大量虚拟机购买共享带宽,而不是为每个虚拟机单独购买带宽。sBwp的优点是可以为用户提供方便的配置和较低的经济成本。然而,sBwp模型给运营商定位共享带宽流量异常的根本原因带来了新的挑战,特别是对于全球分布的数百万用户的大规模公有云。在本文中,我们首先形式化了云上的sBwp问题,并提出了CloudPin,这是一个针对该问题的根本原因定位框架。我们的框架通过采用预测偏差、异常幅度和形状相似度三个子模型的多维算法和整体排序算法解决了所有这些挑战。来自世界知名公有云供应商的真实数据评估表明,我们的算法精度达到97.8%,排名前1,优于多个基线算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CloudPin: A Root Cause Localization Framework of Shared Bandwidth Package Traffic Anomalies in Public Cloud Networks
Due to the sharing nature of public cloud, most of the cloud services use a sharing bandwidth package (sBwp) model to conduct inbound/outbound communication. The sBwp model allows users to purchase a sharing bandwidth for plenty of virtual machines instead of purchasing bandwidth for each virtual machine separately. The advantage of sBwp is that it can provide users with convenient configuration and lower economic cost. However, the sBwp model brings new challenges for operators to localize the root cause of traffic anomalies of a sharing bandwidth, especially for a globally distributed large-scale public cloud with millions of users. In this paper, we first formalize the sBwp problem on the cloud and propose CloudPin, a root cause localization framework for this problem. Our framework solves all the challenges by employing a multi-dimensional algorithm with three sub-models of prediction deviation, anomaly ampli-tude, and shape similarity, and an overall ranking algorithm. Evaluations on real-world data, from one of the world-renowned public cloud vendors, show that our algorithm precision reaches 97.8% for the top 1 of the ranking list, outperforming multiple baseline algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信