根据遥感图像和先验的粗略人口计数,以非常高的分辨率绘制人口分布

L. Gueguen
{"title":"根据遥感图像和先验的粗略人口计数,以非常高的分辨率绘制人口分布","authors":"L. Gueguen","doi":"10.1109/JURSE.2015.7120473","DOIUrl":null,"url":null,"abstract":"The paper presents a fast and fully automatic method for estimating people distribution maps at very high resolution (≥ 25 m) from VHR optical imagery. This method is implemented in the High-res Urban Globe (HUG) suite of tools developed at DigitalGlobe, Inc. The methods relies on the a priori knowledge of coarse people counts to train a model acting on building features extracted from VHR imagery. Experiments and results show the high fidelity of HUG population density estimate to detailed census data.","PeriodicalId":207233,"journal":{"name":"2015 Joint Urban Remote Sensing Event (JURSE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mapping people distribution at very high resolution from remote sensing imagery and a priori coarse people counts\",\"authors\":\"L. Gueguen\",\"doi\":\"10.1109/JURSE.2015.7120473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a fast and fully automatic method for estimating people distribution maps at very high resolution (≥ 25 m) from VHR optical imagery. This method is implemented in the High-res Urban Globe (HUG) suite of tools developed at DigitalGlobe, Inc. The methods relies on the a priori knowledge of coarse people counts to train a model acting on building features extracted from VHR imagery. Experiments and results show the high fidelity of HUG population density estimate to detailed census data.\",\"PeriodicalId\":207233,\"journal\":{\"name\":\"2015 Joint Urban Remote Sensing Event (JURSE)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Joint Urban Remote Sensing Event (JURSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JURSE.2015.7120473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Joint Urban Remote Sensing Event (JURSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JURSE.2015.7120473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种快速、全自动的从VHR光学影像中估计超高分辨率(≥25 m)人群分布图的方法。该方法在DigitalGlobe公司开发的高分辨率城市地球(HUG)工具套件中实现。该方法依靠先验的粗略人数知识来训练一个作用于从VHR图像中提取的建筑特征的模型。实验和结果表明,HUG人口密度估计对详细的人口普查数据具有较高的保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping people distribution at very high resolution from remote sensing imagery and a priori coarse people counts
The paper presents a fast and fully automatic method for estimating people distribution maps at very high resolution (≥ 25 m) from VHR optical imagery. This method is implemented in the High-res Urban Globe (HUG) suite of tools developed at DigitalGlobe, Inc. The methods relies on the a priori knowledge of coarse people counts to train a model acting on building features extracted from VHR imagery. Experiments and results show the high fidelity of HUG population density estimate to detailed census data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信