优化的指纹匹配器

Shuvra Chakraborty
{"title":"优化的指纹匹配器","authors":"Shuvra Chakraborty","doi":"10.1109/ICIINFS.2011.6038063","DOIUrl":null,"url":null,"abstract":"This paper presents a fingerprint matching system which uses eight directional Gabor filter bank, a popular method for enhancing poor quality image, to capture global and local information available in the fingerprints. A new region of interest has been experimented for feature vector compaction. Here, feature vectors are extracted from the directional representation of enhanced image. Matching is extremely fast as it computes only Euclidian difference between feature vectors to compute matching score. Feature vector requires least memory as compared to traditional minutiae based approach as it stores only 64 intensity values. This filter-bank approach has been tested on 800 images of DB1_a of FVC 2002 and 77.125% images are accepted correctly.","PeriodicalId":353966,"journal":{"name":"2011 6th International Conference on Industrial and Information Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An optimized fingerprint matcher\",\"authors\":\"Shuvra Chakraborty\",\"doi\":\"10.1109/ICIINFS.2011.6038063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fingerprint matching system which uses eight directional Gabor filter bank, a popular method for enhancing poor quality image, to capture global and local information available in the fingerprints. A new region of interest has been experimented for feature vector compaction. Here, feature vectors are extracted from the directional representation of enhanced image. Matching is extremely fast as it computes only Euclidian difference between feature vectors to compute matching score. Feature vector requires least memory as compared to traditional minutiae based approach as it stores only 64 intensity values. This filter-bank approach has been tested on 800 images of DB1_a of FVC 2002 and 77.125% images are accepted correctly.\",\"PeriodicalId\":353966,\"journal\":{\"name\":\"2011 6th International Conference on Industrial and Information Systems\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Conference on Industrial and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIINFS.2011.6038063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2011.6038063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于八方向Gabor滤波器组的指纹匹配系统,该系统用于捕获指纹中的全局和局部信息。一个新的感兴趣的区域已经被实验用于特征向量压缩。在这里,从增强图像的方向表示中提取特征向量。匹配非常快,因为它只计算特征向量之间的欧几里得差来计算匹配分数。与传统的基于细节的方法相比,特征向量只存储64个强度值,需要的内存最少。该滤波组方法已在FVC 2002的800幅DB1_a图像上进行了测试,正确率为77.125%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimized fingerprint matcher
This paper presents a fingerprint matching system which uses eight directional Gabor filter bank, a popular method for enhancing poor quality image, to capture global and local information available in the fingerprints. A new region of interest has been experimented for feature vector compaction. Here, feature vectors are extracted from the directional representation of enhanced image. Matching is extremely fast as it computes only Euclidian difference between feature vectors to compute matching score. Feature vector requires least memory as compared to traditional minutiae based approach as it stores only 64 intensity values. This filter-bank approach has been tested on 800 images of DB1_a of FVC 2002 and 77.125% images are accepted correctly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信