{"title":"使用高级功能增强的复调音乐类型分类","authors":"Arash Foroughmand Arabi, Guojun Lu","doi":"10.1109/ICSIPA.2009.5478635","DOIUrl":null,"url":null,"abstract":"The task of classifying the genre of polyphonic music signals is traditionally done using only low level features of the signal. In this paper high level features have been applied to improve the task of music genre classification. The use of statistical chord features and chord progression information in conjunction with low level features are proposed in this paper. The chord progression information is manifested in genre probability descriptors calculated using a pattern matching algorithm. Our proposed method provides an improvement of 12.4% in the classification results over a commonly compared technique.","PeriodicalId":400165,"journal":{"name":"2009 IEEE International Conference on Signal and Image Processing Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Enhanced polyphonic music genre classification using high level features\",\"authors\":\"Arash Foroughmand Arabi, Guojun Lu\",\"doi\":\"10.1109/ICSIPA.2009.5478635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of classifying the genre of polyphonic music signals is traditionally done using only low level features of the signal. In this paper high level features have been applied to improve the task of music genre classification. The use of statistical chord features and chord progression information in conjunction with low level features are proposed in this paper. The chord progression information is manifested in genre probability descriptors calculated using a pattern matching algorithm. Our proposed method provides an improvement of 12.4% in the classification results over a commonly compared technique.\",\"PeriodicalId\":400165,\"journal\":{\"name\":\"2009 IEEE International Conference on Signal and Image Processing Applications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Signal and Image Processing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2009.5478635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2009.5478635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced polyphonic music genre classification using high level features
The task of classifying the genre of polyphonic music signals is traditionally done using only low level features of the signal. In this paper high level features have been applied to improve the task of music genre classification. The use of statistical chord features and chord progression information in conjunction with low level features are proposed in this paper. The chord progression information is manifested in genre probability descriptors calculated using a pattern matching algorithm. Our proposed method provides an improvement of 12.4% in the classification results over a commonly compared technique.