使用高级功能增强的复调音乐类型分类

Arash Foroughmand Arabi, Guojun Lu
{"title":"使用高级功能增强的复调音乐类型分类","authors":"Arash Foroughmand Arabi, Guojun Lu","doi":"10.1109/ICSIPA.2009.5478635","DOIUrl":null,"url":null,"abstract":"The task of classifying the genre of polyphonic music signals is traditionally done using only low level features of the signal. In this paper high level features have been applied to improve the task of music genre classification. The use of statistical chord features and chord progression information in conjunction with low level features are proposed in this paper. The chord progression information is manifested in genre probability descriptors calculated using a pattern matching algorithm. Our proposed method provides an improvement of 12.4% in the classification results over a commonly compared technique.","PeriodicalId":400165,"journal":{"name":"2009 IEEE International Conference on Signal and Image Processing Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Enhanced polyphonic music genre classification using high level features\",\"authors\":\"Arash Foroughmand Arabi, Guojun Lu\",\"doi\":\"10.1109/ICSIPA.2009.5478635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of classifying the genre of polyphonic music signals is traditionally done using only low level features of the signal. In this paper high level features have been applied to improve the task of music genre classification. The use of statistical chord features and chord progression information in conjunction with low level features are proposed in this paper. The chord progression information is manifested in genre probability descriptors calculated using a pattern matching algorithm. Our proposed method provides an improvement of 12.4% in the classification results over a commonly compared technique.\",\"PeriodicalId\":400165,\"journal\":{\"name\":\"2009 IEEE International Conference on Signal and Image Processing Applications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Signal and Image Processing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2009.5478635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2009.5478635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

传统上,对复调音乐信号类型进行分类的任务只使用信号的低电平特征。本文采用高级特征来改进音乐类型分类的任务。本文提出将统计和弦特征和和弦进行信息与低阶特征结合使用。和弦进行信息表现为使用模式匹配算法计算的类型概率描述符。我们提出的方法在分类结果上比常用的比较技术提高了12.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced polyphonic music genre classification using high level features
The task of classifying the genre of polyphonic music signals is traditionally done using only low level features of the signal. In this paper high level features have been applied to improve the task of music genre classification. The use of statistical chord features and chord progression information in conjunction with low level features are proposed in this paper. The chord progression information is manifested in genre probability descriptors calculated using a pattern matching algorithm. Our proposed method provides an improvement of 12.4% in the classification results over a commonly compared technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信