基于时间一致性的人工智能霍尔填充

Li-Jyun Chen, Jie Yang, Li Hong
{"title":"基于时间一致性的人工智能霍尔填充","authors":"Li-Jyun Chen, Jie Yang, Li Hong","doi":"10.1109/ISPACS51563.2021.9651045","DOIUrl":null,"url":null,"abstract":"Depth image-based rendering (DIBR) has been recently considered as a significant technology for generating 3D virtual views. However, the hole-filling method is still the main challenge in the DIBR engine because of the occlusions of foreground objects. While looking into the video sequences, the occluded parts in a frame may be revealed in the past or future frames. The temporal information could be the useful cues to recover the occlusions of the current frame. In this paper, we design an encoder-decoder neural model with a bounded region attention module to effectively fill the holes. This attention module is aim to extract the useful hints from neighbor frames.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-based Holl-filling with Temporal Consistency\",\"authors\":\"Li-Jyun Chen, Jie Yang, Li Hong\",\"doi\":\"10.1109/ISPACS51563.2021.9651045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth image-based rendering (DIBR) has been recently considered as a significant technology for generating 3D virtual views. However, the hole-filling method is still the main challenge in the DIBR engine because of the occlusions of foreground objects. While looking into the video sequences, the occluded parts in a frame may be revealed in the past or future frames. The temporal information could be the useful cues to recover the occlusions of the current frame. In this paper, we design an encoder-decoder neural model with a bounded region attention module to effectively fill the holes. This attention module is aim to extract the useful hints from neighbor frames.\",\"PeriodicalId\":359822,\"journal\":{\"name\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS51563.2021.9651045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9651045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度图像渲染(deep image-based rendering, DIBR)近年来被认为是生成三维虚拟视图的一项重要技术。然而,由于前景物体的遮挡,填充孔洞方法仍然是DIBR引擎面临的主要挑战。在查看视频序列时,一帧中被遮挡的部分可能会在过去或未来的帧中显示出来。时间信息可以作为恢复当前帧遮挡的有用线索。在本文中,我们设计了一个具有有界区域注意模块的编码器-解码器神经模型来有效地填补这些漏洞。注意模块的目的是从相邻帧中提取有用的提示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-based Holl-filling with Temporal Consistency
Depth image-based rendering (DIBR) has been recently considered as a significant technology for generating 3D virtual views. However, the hole-filling method is still the main challenge in the DIBR engine because of the occlusions of foreground objects. While looking into the video sequences, the occluded parts in a frame may be revealed in the past or future frames. The temporal information could be the useful cues to recover the occlusions of the current frame. In this paper, we design an encoder-decoder neural model with a bounded region attention module to effectively fill the holes. This attention module is aim to extract the useful hints from neighbor frames.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信