Lilas Alrahis, Satwik Patnaik, M. Shafique, O. Sinanoglu
{"title":"拥抱图神经网络硬件安全","authors":"Lilas Alrahis, Satwik Patnaik, M. Shafique, O. Sinanoglu","doi":"10.1145/3508352.3561096","DOIUrl":null,"url":null,"abstract":"Graph neural networks (GNNs) have attracted increasing attention due to their superior performance in deep learning on graph-structured data. GNNs have succeeded across various domains such as social networks, chemistry, and electronic design automation (EDA). Electronic circuits have a long history of being represented as graphs, and to no surprise, GNNs have demonstrated state-of-the-art performance in solving various EDA tasks. More importantly, GNNs are now employed to address several hardware security problems, such as detecting intellectual property (IP) piracy and hardware Trojans (HTs), to name a few.In this survey, we first provide a comprehensive overview of the usage of GNNs in hardware security and propose the first taxonomy to divide the state-of-the-art GNN-based hardware security systems into four categories: (i) HT detection systems, (ii) IP piracy detection systems, (iii) reverse engineering platforms, and (iv) attacks on logic locking. We summarize the different architectures, graph types, node features, benchmark data sets, and model evaluation of the employed GNNs. Finally, we elaborate on the lessons learned and discuss future directions.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Embracing Graph Neural Networks for Hardware Security\",\"authors\":\"Lilas Alrahis, Satwik Patnaik, M. Shafique, O. Sinanoglu\",\"doi\":\"10.1145/3508352.3561096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph neural networks (GNNs) have attracted increasing attention due to their superior performance in deep learning on graph-structured data. GNNs have succeeded across various domains such as social networks, chemistry, and electronic design automation (EDA). Electronic circuits have a long history of being represented as graphs, and to no surprise, GNNs have demonstrated state-of-the-art performance in solving various EDA tasks. More importantly, GNNs are now employed to address several hardware security problems, such as detecting intellectual property (IP) piracy and hardware Trojans (HTs), to name a few.In this survey, we first provide a comprehensive overview of the usage of GNNs in hardware security and propose the first taxonomy to divide the state-of-the-art GNN-based hardware security systems into four categories: (i) HT detection systems, (ii) IP piracy detection systems, (iii) reverse engineering platforms, and (iv) attacks on logic locking. We summarize the different architectures, graph types, node features, benchmark data sets, and model evaluation of the employed GNNs. Finally, we elaborate on the lessons learned and discuss future directions.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3561096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3561096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Embracing Graph Neural Networks for Hardware Security
Graph neural networks (GNNs) have attracted increasing attention due to their superior performance in deep learning on graph-structured data. GNNs have succeeded across various domains such as social networks, chemistry, and electronic design automation (EDA). Electronic circuits have a long history of being represented as graphs, and to no surprise, GNNs have demonstrated state-of-the-art performance in solving various EDA tasks. More importantly, GNNs are now employed to address several hardware security problems, such as detecting intellectual property (IP) piracy and hardware Trojans (HTs), to name a few.In this survey, we first provide a comprehensive overview of the usage of GNNs in hardware security and propose the first taxonomy to divide the state-of-the-art GNN-based hardware security systems into four categories: (i) HT detection systems, (ii) IP piracy detection systems, (iii) reverse engineering platforms, and (iv) attacks on logic locking. We summarize the different architectures, graph types, node features, benchmark data sets, and model evaluation of the employed GNNs. Finally, we elaborate on the lessons learned and discuss future directions.