M. Koziński, Raghudeep Gadde, Sergey Zagoruyko, G. Obozinski, R. Marlet
{"title":"具有遮挡的facade解析的MRF形状","authors":"M. Koziński, Raghudeep Gadde, Sergey Zagoruyko, G. Obozinski, R. Marlet","doi":"10.1109/CVPR.2015.7298899","DOIUrl":null,"url":null,"abstract":"We present a new shape prior formalism for the segmentation of rectified facade images. It combines the simplicity of split grammars with unprecedented expressive power: the capability of encoding simultaneous alignment in two dimensions, facade occlusions and irregular boundaries between facade elements. We formulate the task of finding the most likely image segmentation conforming to a prior of the proposed form as a MAP-MRF problem over a 4-connected pixel grid, and propose an efficient optimization algorithm for solving it. Our method simultaneously segments the visible and occluding objects, and recovers the structure of the occluded facade. We demonstrate state-of-the-art results on a number of facade segmentation datasets.","PeriodicalId":444472,"journal":{"name":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"A MRF shape prior for facade parsing with occlusions\",\"authors\":\"M. Koziński, Raghudeep Gadde, Sergey Zagoruyko, G. Obozinski, R. Marlet\",\"doi\":\"10.1109/CVPR.2015.7298899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new shape prior formalism for the segmentation of rectified facade images. It combines the simplicity of split grammars with unprecedented expressive power: the capability of encoding simultaneous alignment in two dimensions, facade occlusions and irregular boundaries between facade elements. We formulate the task of finding the most likely image segmentation conforming to a prior of the proposed form as a MAP-MRF problem over a 4-connected pixel grid, and propose an efficient optimization algorithm for solving it. Our method simultaneously segments the visible and occluding objects, and recovers the structure of the occluded facade. We demonstrate state-of-the-art results on a number of facade segmentation datasets.\",\"PeriodicalId\":444472,\"journal\":{\"name\":\"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2015.7298899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2015.7298899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A MRF shape prior for facade parsing with occlusions
We present a new shape prior formalism for the segmentation of rectified facade images. It combines the simplicity of split grammars with unprecedented expressive power: the capability of encoding simultaneous alignment in two dimensions, facade occlusions and irregular boundaries between facade elements. We formulate the task of finding the most likely image segmentation conforming to a prior of the proposed form as a MAP-MRF problem over a 4-connected pixel grid, and propose an efficient optimization algorithm for solving it. Our method simultaneously segments the visible and occluding objects, and recovers the structure of the occluded facade. We demonstrate state-of-the-art results on a number of facade segmentation datasets.