第二类计算复杂度

R. Constable
{"title":"第二类计算复杂度","authors":"R. Constable","doi":"10.1145/800125.804041","DOIUrl":null,"url":null,"abstract":"A programming language for the partial computable functionals is used as the basis for a definition of the computational complexity of functionals (type2 functions). An axiomatic account in the spirit of Blum is then provided. The novel features of this approach are justified by applying it to problems in abstract complexity, specifically operator speed-up, and by using it to define the illusive notion of the polynomial degree of an arbitrary function. New results are obtained for these degrees.","PeriodicalId":242946,"journal":{"name":"Proceedings of the fifth annual ACM symposium on Theory of computing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1973-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Type two computational complexity\",\"authors\":\"R. Constable\",\"doi\":\"10.1145/800125.804041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A programming language for the partial computable functionals is used as the basis for a definition of the computational complexity of functionals (type2 functions). An axiomatic account in the spirit of Blum is then provided. The novel features of this approach are justified by applying it to problems in abstract complexity, specifically operator speed-up, and by using it to define the illusive notion of the polynomial degree of an arbitrary function. New results are obtained for these degrees.\",\"PeriodicalId\":242946,\"journal\":{\"name\":\"Proceedings of the fifth annual ACM symposium on Theory of computing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1973-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the fifth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800125.804041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fifth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800125.804041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

部分可计算函数的编程语言被用作函数(type2函数)计算复杂度定义的基础。然后,以布鲁姆的精神提供了一个不言自明的解释。通过将该方法应用于抽象复杂性问题,特别是算子加速问题,并使用它来定义任意函数的多项式次的虚幻概念,证明了该方法的新特性。这些学位得到了新的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Type two computational complexity
A programming language for the partial computable functionals is used as the basis for a definition of the computational complexity of functionals (type2 functions). An axiomatic account in the spirit of Blum is then provided. The novel features of this approach are justified by applying it to problems in abstract complexity, specifically operator speed-up, and by using it to define the illusive notion of the polynomial degree of an arbitrary function. New results are obtained for these degrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信