{"title":"可逆计算系统、逻辑电路和元胞自动机","authors":"K. Morita","doi":"10.1109/ICNC.2012.10","DOIUrl":null,"url":null,"abstract":"Reversible computing is a paradigm of computation that reflects physical reversibility, and will become important when we develop future computing systems that directly utilize microscopic physical phenomena for logical operations. In this survey we discuss, from a theoretical point of view, how a reversible computer is implemented as a reversible logic circuit, how a reversible logic circuit is composed of reversible logic elements, and how a reversible logic element can be realized in a physically reversible system. We shall see that, in spite of the constraint of reversibility, universal reversible computers can be constructed by very simple reversible primitives, and that in these systems computation is often carried out in a very unique and different manner from conventional computing systems.","PeriodicalId":442973,"journal":{"name":"2012 Third International Conference on Networking and Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Reversible Computing Systems, Logic Circuits, and Cellular Automata\",\"authors\":\"K. Morita\",\"doi\":\"10.1109/ICNC.2012.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reversible computing is a paradigm of computation that reflects physical reversibility, and will become important when we develop future computing systems that directly utilize microscopic physical phenomena for logical operations. In this survey we discuss, from a theoretical point of view, how a reversible computer is implemented as a reversible logic circuit, how a reversible logic circuit is composed of reversible logic elements, and how a reversible logic element can be realized in a physically reversible system. We shall see that, in spite of the constraint of reversibility, universal reversible computers can be constructed by very simple reversible primitives, and that in these systems computation is often carried out in a very unique and different manner from conventional computing systems.\",\"PeriodicalId\":442973,\"journal\":{\"name\":\"2012 Third International Conference on Networking and Computing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third International Conference on Networking and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Networking and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reversible Computing Systems, Logic Circuits, and Cellular Automata
Reversible computing is a paradigm of computation that reflects physical reversibility, and will become important when we develop future computing systems that directly utilize microscopic physical phenomena for logical operations. In this survey we discuss, from a theoretical point of view, how a reversible computer is implemented as a reversible logic circuit, how a reversible logic circuit is composed of reversible logic elements, and how a reversible logic element can be realized in a physically reversible system. We shall see that, in spite of the constraint of reversibility, universal reversible computers can be constructed by very simple reversible primitives, and that in these systems computation is often carried out in a very unique and different manner from conventional computing systems.