{"title":"归一化二维ARMA晶格参数建模算法","authors":"Hon Keung Kwan, Ying Chun","doi":"10.1109/PACRIM.1989.48379","DOIUrl":null,"url":null,"abstract":"A Levinson-type algorithm is proposed for estimating the two-dimensional autoregressive-moving average (ARMA) model from the observed inputs and outputs of an unknown 2-D system. By applying the concept of dummy prediction errors, the algorithm can be extended for computing 2-D models of any AR-order and MA-order. It is shown that the algorithm can be greatly simplified when the input is a white process.<<ETX>>","PeriodicalId":256287,"journal":{"name":"Conference Proceeding IEEE Pacific Rim Conference on Communications, Computers and Signal Processing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Normalized 2-D ARMA lattice parameter modeling algorithm\",\"authors\":\"Hon Keung Kwan, Ying Chun\",\"doi\":\"10.1109/PACRIM.1989.48379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Levinson-type algorithm is proposed for estimating the two-dimensional autoregressive-moving average (ARMA) model from the observed inputs and outputs of an unknown 2-D system. By applying the concept of dummy prediction errors, the algorithm can be extended for computing 2-D models of any AR-order and MA-order. It is shown that the algorithm can be greatly simplified when the input is a white process.<<ETX>>\",\"PeriodicalId\":256287,\"journal\":{\"name\":\"Conference Proceeding IEEE Pacific Rim Conference on Communications, Computers and Signal Processing\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceeding IEEE Pacific Rim Conference on Communications, Computers and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.1989.48379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceeding IEEE Pacific Rim Conference on Communications, Computers and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.1989.48379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Normalized 2-D ARMA lattice parameter modeling algorithm
A Levinson-type algorithm is proposed for estimating the two-dimensional autoregressive-moving average (ARMA) model from the observed inputs and outputs of an unknown 2-D system. By applying the concept of dummy prediction errors, the algorithm can be extended for computing 2-D models of any AR-order and MA-order. It is shown that the algorithm can be greatly simplified when the input is a white process.<>