通过提取颜色和纹理对图像的积累

Agyztia Premana, R. H. Bhakti, Dimas Prayogi
{"title":"通过提取颜色和纹理对图像的积累","authors":"Agyztia Premana, R. H. Bhakti, Dimas Prayogi","doi":"10.46772/intech.v2i01.190","DOIUrl":null,"url":null,"abstract":"Segmentasi citra menjadi landasan utama pada proses analisa dan pengenalan citra digital. Segmentasi membagi citra digital kedalam beberapa wilayah yang unik berdasarkan piksel yang homogeny. Segmentasi citra mengelompokkan piksel yang homogeny berdasarkan beberapa fitur seperti warna, tekstur dan bentuk. Warna mengandung banyak informasi dan manusia dapat melihat berjuta-juta kombinasi dan intensitas warna, dibandingkan dengan ke abu-abuan (greyscale) atau hitam putih (binary). Metode yang diterapkan adalah metode clustering. Fitur citra digital yang akan diekstraksi adalah tekstur dan warna. Untuk tekstur menggunakan filter gabor sedangkan untuk ekstraksi warna menggunakan vector ruang L*a*b. namun filter gabor mempunyai kelemahan yaitu ketika citra yang disegmentasi banyak tekstur makro, sehingga mempengaruhi akurasi dalam segmentasi citra digital. Sebagai pendukung dalam meningkatkan akurasi dalam ekstraksi tekstur makro digunakan metode k-means. Penelitian penggunaan fitur tekstur meningkat menjadi 17,5% dan ekstraksi warna keabu-abuan meningkat 16,24%. Sedangkan fitur filter gabor dapat meningkatkan akurasi segmentasi citra digital 2% pada ekstrksi warna pada ruang warna L*a*b meningkat 0.3% \n  \n ","PeriodicalId":430510,"journal":{"name":"Jurnal Ilmiah Intech : Information Technology Journal of UMUS","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Segmentasi K-Means Clustering Pada Citra Menggunakan Ekstrasi Fitur Warna dan Tekstur\",\"authors\":\"Agyztia Premana, R. H. Bhakti, Dimas Prayogi\",\"doi\":\"10.46772/intech.v2i01.190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentasi citra menjadi landasan utama pada proses analisa dan pengenalan citra digital. Segmentasi membagi citra digital kedalam beberapa wilayah yang unik berdasarkan piksel yang homogeny. Segmentasi citra mengelompokkan piksel yang homogeny berdasarkan beberapa fitur seperti warna, tekstur dan bentuk. Warna mengandung banyak informasi dan manusia dapat melihat berjuta-juta kombinasi dan intensitas warna, dibandingkan dengan ke abu-abuan (greyscale) atau hitam putih (binary). Metode yang diterapkan adalah metode clustering. Fitur citra digital yang akan diekstraksi adalah tekstur dan warna. Untuk tekstur menggunakan filter gabor sedangkan untuk ekstraksi warna menggunakan vector ruang L*a*b. namun filter gabor mempunyai kelemahan yaitu ketika citra yang disegmentasi banyak tekstur makro, sehingga mempengaruhi akurasi dalam segmentasi citra digital. Sebagai pendukung dalam meningkatkan akurasi dalam ekstraksi tekstur makro digunakan metode k-means. Penelitian penggunaan fitur tekstur meningkat menjadi 17,5% dan ekstraksi warna keabu-abuan meningkat 16,24%. Sedangkan fitur filter gabor dapat meningkatkan akurasi segmentasi citra digital 2% pada ekstrksi warna pada ruang warna L*a*b meningkat 0.3% \\n  \\n \",\"PeriodicalId\":430510,\"journal\":{\"name\":\"Jurnal Ilmiah Intech : Information Technology Journal of UMUS\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Ilmiah Intech : Information Technology Journal of UMUS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46772/intech.v2i01.190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Intech : Information Technology Journal of UMUS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46772/intech.v2i01.190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

分割图像成为数字图像分析和识别过程的主要基石。分割将数字图像分裂成几个以均匀像素为基础的独特区域。分割图像,根据颜色、纹理和形状等特征对均基像素进行分组。颜色含有丰富的信息,人类可以看到数以百万计的颜色组合和强度,而不是灰灰色或黑白相间。应用方法是凝集法。提取出来的数字图像特征是纹理和颜色。用于纹理使用gabor滤镜,而用于提取颜色使用向量空间L*a*b。但是gabor滤镜的弱点是图像分散了很多宏观纹理,从而影响了数字图像分割的准确性。从宏观结构提取中增加准确性的支持者使用的是k-均值方法。使用纹理特征的研究增加到17.5%,而风险颜色提取增加了1624%。而gabor滤镜功能可以增加L*a*b色谱中2%的数字图像增强0.3%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentasi K-Means Clustering Pada Citra Menggunakan Ekstrasi Fitur Warna dan Tekstur
Segmentasi citra menjadi landasan utama pada proses analisa dan pengenalan citra digital. Segmentasi membagi citra digital kedalam beberapa wilayah yang unik berdasarkan piksel yang homogeny. Segmentasi citra mengelompokkan piksel yang homogeny berdasarkan beberapa fitur seperti warna, tekstur dan bentuk. Warna mengandung banyak informasi dan manusia dapat melihat berjuta-juta kombinasi dan intensitas warna, dibandingkan dengan ke abu-abuan (greyscale) atau hitam putih (binary). Metode yang diterapkan adalah metode clustering. Fitur citra digital yang akan diekstraksi adalah tekstur dan warna. Untuk tekstur menggunakan filter gabor sedangkan untuk ekstraksi warna menggunakan vector ruang L*a*b. namun filter gabor mempunyai kelemahan yaitu ketika citra yang disegmentasi banyak tekstur makro, sehingga mempengaruhi akurasi dalam segmentasi citra digital. Sebagai pendukung dalam meningkatkan akurasi dalam ekstraksi tekstur makro digunakan metode k-means. Penelitian penggunaan fitur tekstur meningkat menjadi 17,5% dan ekstraksi warna keabu-abuan meningkat 16,24%. Sedangkan fitur filter gabor dapat meningkatkan akurasi segmentasi citra digital 2% pada ekstrksi warna pada ruang warna L*a*b meningkat 0.3%    
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信