连续控制器参数自动整定的迭代方法

Hamza el Baccouri, Goulven Guillou, Jean-Philippe Babau
{"title":"连续控制器参数自动整定的迭代方法","authors":"Hamza el Baccouri, Goulven Guillou, Jean-Philippe Babau","doi":"10.1109/EUC50751.2020.00008","DOIUrl":null,"url":null,"abstract":"Cyber-physical systems evolving in uncertain environment endure fluctuating dynamics during their lifetime. In such a variable context, controlling systems towards safety and system performances is challenging. In particular, controller tuning (finding optimal control parameters) is a challenging process due to the multiplicity of contexts to be considered. In this paper, we use a combination of model-driven simulation, dimensionality reduction, clustering and prediction techniques to define adequate control parameter settings. First, we propose to explore the controller behavior by simulating different configurations, a configuration is defined by a context (controlled process, environment, sensors, actuators) and a control parameters setting. From simulation results, a discretization is performed by binning the evaluation of quality of control. Then, we apply feature selection algorithms to identify contextual parameters that have a significant impact on performances of the controller. Considering only selected parameters, we finally carry out a clustering aiming at identifying for context domains an optimal control parameter setting. The approach is iterative to define the boundaries of the controller for a given context domain. For non simulated contexts, we propose a prediction module based on regression techniques.To evaluate the proposed approach, we compare it with classical control theory and we apply it to a proportional controller used for a leader/follower application. The experiment shows effectiveness in the identification of control parameters setting for different contexts.","PeriodicalId":331605,"journal":{"name":"2020 IEEE 18th International Conference on Embedded and Ubiquitous Computing (EUC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Iterative Approach to Automate the Tuning of Continuous Controller Parameters\",\"authors\":\"Hamza el Baccouri, Goulven Guillou, Jean-Philippe Babau\",\"doi\":\"10.1109/EUC50751.2020.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-physical systems evolving in uncertain environment endure fluctuating dynamics during their lifetime. In such a variable context, controlling systems towards safety and system performances is challenging. In particular, controller tuning (finding optimal control parameters) is a challenging process due to the multiplicity of contexts to be considered. In this paper, we use a combination of model-driven simulation, dimensionality reduction, clustering and prediction techniques to define adequate control parameter settings. First, we propose to explore the controller behavior by simulating different configurations, a configuration is defined by a context (controlled process, environment, sensors, actuators) and a control parameters setting. From simulation results, a discretization is performed by binning the evaluation of quality of control. Then, we apply feature selection algorithms to identify contextual parameters that have a significant impact on performances of the controller. Considering only selected parameters, we finally carry out a clustering aiming at identifying for context domains an optimal control parameter setting. The approach is iterative to define the boundaries of the controller for a given context domain. For non simulated contexts, we propose a prediction module based on regression techniques.To evaluate the proposed approach, we compare it with classical control theory and we apply it to a proportional controller used for a leader/follower application. The experiment shows effectiveness in the identification of control parameters setting for different contexts.\",\"PeriodicalId\":331605,\"journal\":{\"name\":\"2020 IEEE 18th International Conference on Embedded and Ubiquitous Computing (EUC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 18th International Conference on Embedded and Ubiquitous Computing (EUC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUC50751.2020.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 18th International Conference on Embedded and Ubiquitous Computing (EUC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUC50751.2020.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在不确定环境中发展的信息物理系统在其生命周期中承受着波动动力学。在这样一个多变的环境中,控制系统的安全性和系统性能是具有挑战性的。特别是,由于要考虑的上下文的多样性,控制器调谐(寻找最优控制参数)是一个具有挑战性的过程。在本文中,我们使用模型驱动仿真,降维,聚类和预测技术的组合来定义适当的控制参数设置。首先,我们建议通过模拟不同的配置来探索控制器的行为,配置由上下文(受控过程、环境、传感器、执行器)和控制参数设置定义。从仿真结果出发,通过对控制质量的合并评价进行离散化处理。然后,我们应用特征选择算法来识别对控制器性能有重大影响的上下文参数。仅考虑选定的参数,最后进行聚类,目的是识别上下文域的最优控制参数设置。该方法是迭代的,可以为给定的上下文域定义控制器的边界。对于非模拟环境,我们提出了一个基于回归技术的预测模块。为了评估所提出的方法,我们将其与经典控制理论进行比较,并将其应用于用于领导者/追随者应用的比例控制器。实验结果表明,该方法可以有效地识别不同环境下的控制参数设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Iterative Approach to Automate the Tuning of Continuous Controller Parameters
Cyber-physical systems evolving in uncertain environment endure fluctuating dynamics during their lifetime. In such a variable context, controlling systems towards safety and system performances is challenging. In particular, controller tuning (finding optimal control parameters) is a challenging process due to the multiplicity of contexts to be considered. In this paper, we use a combination of model-driven simulation, dimensionality reduction, clustering and prediction techniques to define adequate control parameter settings. First, we propose to explore the controller behavior by simulating different configurations, a configuration is defined by a context (controlled process, environment, sensors, actuators) and a control parameters setting. From simulation results, a discretization is performed by binning the evaluation of quality of control. Then, we apply feature selection algorithms to identify contextual parameters that have a significant impact on performances of the controller. Considering only selected parameters, we finally carry out a clustering aiming at identifying for context domains an optimal control parameter setting. The approach is iterative to define the boundaries of the controller for a given context domain. For non simulated contexts, we propose a prediction module based on regression techniques.To evaluate the proposed approach, we compare it with classical control theory and we apply it to a proportional controller used for a leader/follower application. The experiment shows effectiveness in the identification of control parameters setting for different contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信