联合关系集成与域聚类的贝叶斯非参数模型

Dazhuo Li, Fahim Mohammad, E. Rouchka
{"title":"联合关系集成与域聚类的贝叶斯非参数模型","authors":"Dazhuo Li, Fahim Mohammad, E. Rouchka","doi":"10.1109/ICMLA.2010.168","DOIUrl":null,"url":null,"abstract":"Relational databases provide unprecedented opportunities for knowledge discovery. Various approaches have been proposed to infer structures over entity types and predict relationships among elements of these types. However, discovering structures beyond the entity type level, e.g. clustering over relation concepts, remains a challenging task. We present a Bayesian nonparametric model for joint relation and domain clustering. The model can automatically infer the number of relation clusters, which is particularly important in novel cases where little prior knowledge is known about the number of relation clusters. The approach is applied to clustering various relations in a gene database. Keywords-relational learning; clustering; Bayesian non- parametric","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Bayesian Nonparametric Model for Joint Relation Integration and Domain Clustering\",\"authors\":\"Dazhuo Li, Fahim Mohammad, E. Rouchka\",\"doi\":\"10.1109/ICMLA.2010.168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relational databases provide unprecedented opportunities for knowledge discovery. Various approaches have been proposed to infer structures over entity types and predict relationships among elements of these types. However, discovering structures beyond the entity type level, e.g. clustering over relation concepts, remains a challenging task. We present a Bayesian nonparametric model for joint relation and domain clustering. The model can automatically infer the number of relation clusters, which is particularly important in novel cases where little prior knowledge is known about the number of relation clusters. The approach is applied to clustering various relations in a gene database. Keywords-relational learning; clustering; Bayesian non- parametric\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

关系数据库为知识发现提供了前所未有的机会。已经提出了各种方法来推断实体类型的结构并预测这些类型的元素之间的关系。然而,发现实体类型级别以外的结构,例如关系概念上的聚类,仍然是一项具有挑战性的任务。提出了一种用于联合关系和域聚类的贝叶斯非参数模型。该模型可以自动推断出关系簇的数量,这在对关系簇数量知之甚少的新情况下尤为重要。将该方法应用于基因数据库中各种关系的聚类。Keywords-relational学习;聚类;贝叶斯非参数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian Nonparametric Model for Joint Relation Integration and Domain Clustering
Relational databases provide unprecedented opportunities for knowledge discovery. Various approaches have been proposed to infer structures over entity types and predict relationships among elements of these types. However, discovering structures beyond the entity type level, e.g. clustering over relation concepts, remains a challenging task. We present a Bayesian nonparametric model for joint relation and domain clustering. The model can automatically infer the number of relation clusters, which is particularly important in novel cases where little prior knowledge is known about the number of relation clusters. The approach is applied to clustering various relations in a gene database. Keywords-relational learning; clustering; Bayesian non- parametric
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信