{"title":"利用gpgpu实现TeraCUPS的最长公共子序列问题","authors":"Adnan Ozsoy, A. Chauhan, D. M. Swany","doi":"10.1109/ICPADS.2013.22","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a novel technique to optimize longest common subsequence (LCS) algorithm for one-to-many matching problem on GPUs by transforming the computation into bit-wise operations and a post-processing step. The former can be highly optimized and achieves more than a trillion operations (cell updates) per second (CUPS)-a first for LCS algorithms. The latter is more efficiently done on CPUs, in a fraction of the bit-wise computation time. The bit-wise step promises to be a foundational step and a fundamentally new approach to developing algorithms for increasingly popular heterogeneous environments that could dramatically increase the applicability of hybrid CPU-GPU environments.","PeriodicalId":160979,"journal":{"name":"2013 International Conference on Parallel and Distributed Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Achieving TeraCUPS on Longest Common Subsequence Problem Using GPGPUs\",\"authors\":\"Adnan Ozsoy, A. Chauhan, D. M. Swany\",\"doi\":\"10.1109/ICPADS.2013.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe a novel technique to optimize longest common subsequence (LCS) algorithm for one-to-many matching problem on GPUs by transforming the computation into bit-wise operations and a post-processing step. The former can be highly optimized and achieves more than a trillion operations (cell updates) per second (CUPS)-a first for LCS algorithms. The latter is more efficiently done on CPUs, in a fraction of the bit-wise computation time. The bit-wise step promises to be a foundational step and a fundamentally new approach to developing algorithms for increasingly popular heterogeneous environments that could dramatically increase the applicability of hybrid CPU-GPU environments.\",\"PeriodicalId\":160979,\"journal\":{\"name\":\"2013 International Conference on Parallel and Distributed Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Parallel and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS.2013.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2013.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Achieving TeraCUPS on Longest Common Subsequence Problem Using GPGPUs
In this paper, we describe a novel technique to optimize longest common subsequence (LCS) algorithm for one-to-many matching problem on GPUs by transforming the computation into bit-wise operations and a post-processing step. The former can be highly optimized and achieves more than a trillion operations (cell updates) per second (CUPS)-a first for LCS algorithms. The latter is more efficiently done on CPUs, in a fraction of the bit-wise computation time. The bit-wise step promises to be a foundational step and a fundamentally new approach to developing algorithms for increasingly popular heterogeneous environments that could dramatically increase the applicability of hybrid CPU-GPU environments.