基于查询的人-物交互检测锚

Junwen Chen, Keiji Yanai
{"title":"基于查询的人-物交互检测锚","authors":"Junwen Chen, Keiji Yanai","doi":"10.23919/MVA57639.2023.10215534","DOIUrl":null,"url":null,"abstract":"Human-object interaction (HOI) detection as a downstream of object detection task requires localizing pairs of humans and objects and recognizing the interaction between them. Recent one-stage approaches focus on detecting possible interaction points or filtering human-object pairs, ignoring the variability in the location and size of different objects at spatial scales. In this paper, we propose a transformer-based method, QAHOI (Query-Based Anchors for Human-Object Interaction detection), which leverages a multi-scale architecture to extract features from different spatial scales and uses query-based anchors to predict all the elements of an HOI instance. We further investigate that a powerful backbone significantly increases accuracy for QAHOI, and QAHOI with a transformer-based backbone outperforms recent state-of-the-art methods by large margins on the HICO-DET benchmark.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"QAHOI: Query-Based Anchors for Human-Object Interaction Detection\",\"authors\":\"Junwen Chen, Keiji Yanai\",\"doi\":\"10.23919/MVA57639.2023.10215534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human-object interaction (HOI) detection as a downstream of object detection task requires localizing pairs of humans and objects and recognizing the interaction between them. Recent one-stage approaches focus on detecting possible interaction points or filtering human-object pairs, ignoring the variability in the location and size of different objects at spatial scales. In this paper, we propose a transformer-based method, QAHOI (Query-Based Anchors for Human-Object Interaction detection), which leverages a multi-scale architecture to extract features from different spatial scales and uses query-based anchors to predict all the elements of an HOI instance. We further investigate that a powerful backbone significantly increases accuracy for QAHOI, and QAHOI with a transformer-based backbone outperforms recent state-of-the-art methods by large margins on the HICO-DET benchmark.\",\"PeriodicalId\":338734,\"journal\":{\"name\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 18th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA57639.2023.10215534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10215534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

人-物交互(HOI)检测作为目标检测的下游任务,需要对人-物对进行定位,识别人-物之间的交互。最近的单阶段方法侧重于检测可能的交互点或过滤人-物体对,忽略了不同物体在空间尺度上的位置和大小的可变性。在本文中,我们提出了一种基于转换器的方法QAHOI(基于查询的人-对象交互检测锚),它利用多尺度架构从不同的空间尺度提取特征,并使用基于查询的锚来预测一个HOI实例的所有元素。我们进一步研究了强大的主干网显著提高了QAHOI的准确性,并且在HICO-DET基准上,基于变压器的主干网的QAHOI在很大程度上优于最近最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QAHOI: Query-Based Anchors for Human-Object Interaction Detection
Human-object interaction (HOI) detection as a downstream of object detection task requires localizing pairs of humans and objects and recognizing the interaction between them. Recent one-stage approaches focus on detecting possible interaction points or filtering human-object pairs, ignoring the variability in the location and size of different objects at spatial scales. In this paper, we propose a transformer-based method, QAHOI (Query-Based Anchors for Human-Object Interaction detection), which leverages a multi-scale architecture to extract features from different spatial scales and uses query-based anchors to predict all the elements of an HOI instance. We further investigate that a powerful backbone significantly increases accuracy for QAHOI, and QAHOI with a transformer-based backbone outperforms recent state-of-the-art methods by large margins on the HICO-DET benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信