基于SIFT的动态对象理解深度学习方法

Yuan-Tsung Chang, T. Shih
{"title":"基于SIFT的动态对象理解深度学习方法","authors":"Yuan-Tsung Chang, T. Shih","doi":"10.1109/Ubi-Media.2019.00033","DOIUrl":null,"url":null,"abstract":"Deep learning is a method that is very commonly used in image recognition. We use the SIFT method to extract feature points, so that the machine can detect the objects in the motion images and they can be integrated into the operation of the robot arm to judge and capture specific objects. This method is also used to detect whether the parameters of the object meet the predetermined values. It will provide a warning if the predetermined values are not met. This can be used to identify the good and defective products on the production line. In the CNN database we have trained more than 30,000 images and improved the last step of SIFT algorithm to demonstrate that our new method can achieve better accuracy.","PeriodicalId":259542,"journal":{"name":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Deep Learning Approach for Dynamic Object Understanding Using SIFT\",\"authors\":\"Yuan-Tsung Chang, T. Shih\",\"doi\":\"10.1109/Ubi-Media.2019.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is a method that is very commonly used in image recognition. We use the SIFT method to extract feature points, so that the machine can detect the objects in the motion images and they can be integrated into the operation of the robot arm to judge and capture specific objects. This method is also used to detect whether the parameters of the object meet the predetermined values. It will provide a warning if the predetermined values are not met. This can be used to identify the good and defective products on the production line. In the CNN database we have trained more than 30,000 images and improved the last step of SIFT algorithm to demonstrate that our new method can achieve better accuracy.\",\"PeriodicalId\":259542,\"journal\":{\"name\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Ubi-Media.2019.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Ubi-Media.2019.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度学习是一种在图像识别中非常常用的方法。我们使用SIFT方法提取特征点,使机器能够检测运动图像中的物体,并将其整合到机械臂的操作中,对特定物体进行判断和捕获。该方法还用于检测目标参数是否满足预定值。如果不满足预定值,它将提供警告。这可以用来识别生产线上的良品和次品。在CNN数据库中,我们训练了3万多张图像,并对SIFT算法的最后一步进行了改进,证明我们的新方法可以达到更好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learning Approach for Dynamic Object Understanding Using SIFT
Deep learning is a method that is very commonly used in image recognition. We use the SIFT method to extract feature points, so that the machine can detect the objects in the motion images and they can be integrated into the operation of the robot arm to judge and capture specific objects. This method is also used to detect whether the parameters of the object meet the predetermined values. It will provide a warning if the predetermined values are not met. This can be used to identify the good and defective products on the production line. In the CNN database we have trained more than 30,000 images and improved the last step of SIFT algorithm to demonstrate that our new method can achieve better accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信