利用嵌入式图形处理器加速图像拼接

Karam M. Abughalieh, O. Bataineh, Shadi G. Alawneh
{"title":"利用嵌入式图形处理器加速图像拼接","authors":"Karam M. Abughalieh, O. Bataineh, Shadi G. Alawneh","doi":"10.1109/EIT.2018.8500187","DOIUrl":null,"url":null,"abstract":"Feature detection and matching are powerful techniques used in many computer vision applications such as image registration, tracking, and object detection. In this paper, a parallel implementation for invariant feature point based image warping and stitching using embedded GPU platform is implemented. The proposed solution is a mix of OpenCV functions and Unified Device Architecture (CUDA) kernels. CUDA kernel is used to perform the image translation tasks based on the translation info obtained by OpenCV. A sequential code is developed first to be used as a reference for the speed up calculations. The experimental results show a speed up of 100x and more using our GPU code with large images.","PeriodicalId":188414,"journal":{"name":"2018 IEEE International Conference on Electro/Information Technology (EIT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Acceleration of Image Stitching Using Embedded Graphics Processing Unit\",\"authors\":\"Karam M. Abughalieh, O. Bataineh, Shadi G. Alawneh\",\"doi\":\"10.1109/EIT.2018.8500187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature detection and matching are powerful techniques used in many computer vision applications such as image registration, tracking, and object detection. In this paper, a parallel implementation for invariant feature point based image warping and stitching using embedded GPU platform is implemented. The proposed solution is a mix of OpenCV functions and Unified Device Architecture (CUDA) kernels. CUDA kernel is used to perform the image translation tasks based on the translation info obtained by OpenCV. A sequential code is developed first to be used as a reference for the speed up calculations. The experimental results show a speed up of 100x and more using our GPU code with large images.\",\"PeriodicalId\":188414,\"journal\":{\"name\":\"2018 IEEE International Conference on Electro/Information Technology (EIT)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Electro/Information Technology (EIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2018.8500187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2018.8500187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

特征检测和匹配是许多计算机视觉应用中使用的强大技术,如图像配准,跟踪和目标检测。本文提出了一种基于嵌入式GPU平台的基于不变特征点的图像扭曲与拼接的并行实现方法。提出的解决方案是OpenCV功能和统一设备架构(CUDA)内核的混合。CUDA内核基于OpenCV获取的转换信息执行图像转换任务。首先开发一个顺序代码,作为加速计算的参考。实验结果表明,使用我们的GPU代码处理大图像的速度提高了100倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acceleration of Image Stitching Using Embedded Graphics Processing Unit
Feature detection and matching are powerful techniques used in many computer vision applications such as image registration, tracking, and object detection. In this paper, a parallel implementation for invariant feature point based image warping and stitching using embedded GPU platform is implemented. The proposed solution is a mix of OpenCV functions and Unified Device Architecture (CUDA) kernels. CUDA kernel is used to perform the image translation tasks based on the translation info obtained by OpenCV. A sequential code is developed first to be used as a reference for the speed up calculations. The experimental results show a speed up of 100x and more using our GPU code with large images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信