线性无关指令及其在矩形和低阶线性系统中的应用

A. Storjohann, Shiyun Yang
{"title":"线性无关指令及其在矩形和低阶线性系统中的应用","authors":"A. Storjohann, Shiyun Yang","doi":"10.1145/2608628.2608673","DOIUrl":null,"url":null,"abstract":"Randomized algorithms are given for linear algebra problems on an input matrix <i>A</i> ∈ K<sup><i>n</i>x<i>m</i></sup> over a field K. We give an algorithm that simultaneously computes the row and column rank profiles of <i>A</i> in 2<i>r</i><sup>3</sup> + (<i>r</i><sup>2</sup> + <i>n</i> + <i>m</i> + |<i>A</i>|)<sup>1+<i>o</i>(1)</sup> field operations from K, where <i>r</i> is the rank of <i>A</i> and |<i>A</i>| denotes the number of nonzero entries of <i>A</i>. Here, the +<i>o</i>(1) in cost estimates captures some missing log <i>n</i> and log <i>m</i> factors. The rank profiles algorithm is randomized of the Monte Carlo type: the correct answer will be returned with probability at least 1/2. Given a <i>b</i> ∈ K<sup><i>n</i>x1</sup>, we give an algorithm that either computes a particular solution vector <i>x</i> ∈ K<sup><i>m</i>x1</sup> to the system <i>Ax</i> = <i>b</i>, or produces an inconsistency certificate vector <i>u</i> ∈ K<sup>1x<i>n</i></sup> such that <i>uA</i> = 0 and <i>ub</i> ≠ 0. The linear solver examines at most <i>r</i> + 1 rows and <i>r</i> columns of <i>A</i> and has running time 2<i>r</i><sup>3</sup> + (<i>r</i><sup>2</sup> + <i>n</i> + <i>m</i> + |<i>R</i>| + |<i>C</i>|)<sup>1+<i>o</i>(1)</sup> field operations from K, where |<i>R</i>| and |<i>C</i>| are the number of nonzero entries in the rows and columns, respectively, that are examined. The solver is randomized of the Las Vegas type: an incorrect result is never returned but the algorithm may report FAIL with probability at most 1/2. These cost estimates are achieved by making use of a novel randomized online data structure for the detection of linearly independent rows and columns.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Linear independence oracles and applications to rectangular and low rank linear systems\",\"authors\":\"A. Storjohann, Shiyun Yang\",\"doi\":\"10.1145/2608628.2608673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Randomized algorithms are given for linear algebra problems on an input matrix <i>A</i> ∈ K<sup><i>n</i>x<i>m</i></sup> over a field K. We give an algorithm that simultaneously computes the row and column rank profiles of <i>A</i> in 2<i>r</i><sup>3</sup> + (<i>r</i><sup>2</sup> + <i>n</i> + <i>m</i> + |<i>A</i>|)<sup>1+<i>o</i>(1)</sup> field operations from K, where <i>r</i> is the rank of <i>A</i> and |<i>A</i>| denotes the number of nonzero entries of <i>A</i>. Here, the +<i>o</i>(1) in cost estimates captures some missing log <i>n</i> and log <i>m</i> factors. The rank profiles algorithm is randomized of the Monte Carlo type: the correct answer will be returned with probability at least 1/2. Given a <i>b</i> ∈ K<sup><i>n</i>x1</sup>, we give an algorithm that either computes a particular solution vector <i>x</i> ∈ K<sup><i>m</i>x1</sup> to the system <i>Ax</i> = <i>b</i>, or produces an inconsistency certificate vector <i>u</i> ∈ K<sup>1x<i>n</i></sup> such that <i>uA</i> = 0 and <i>ub</i> ≠ 0. The linear solver examines at most <i>r</i> + 1 rows and <i>r</i> columns of <i>A</i> and has running time 2<i>r</i><sup>3</sup> + (<i>r</i><sup>2</sup> + <i>n</i> + <i>m</i> + |<i>R</i>| + |<i>C</i>|)<sup>1+<i>o</i>(1)</sup> field operations from K, where |<i>R</i>| and |<i>C</i>| are the number of nonzero entries in the rows and columns, respectively, that are examined. The solver is randomized of the Las Vegas type: an incorrect result is never returned but the algorithm may report FAIL with probability at most 1/2. These cost estimates are achieved by making use of a novel randomized online data structure for the detection of linearly independent rows and columns.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随机算法给出了线性代数问题的输入矩阵∈Knxm字段K .我们给出一个算法,同时计算的行和列等级资料在2 r3 + (r2 + n + m + | |) 1 + o(1)操作从K, r是A的秩和| |表示数量的非零项A, + o(1)成本估计捕捉一些失踪的o (log n)和日志m因素。排名概要算法是蒙特卡罗类型的随机化:正确答案将以至少1/2的概率返回。给定b∈Knx1,我们给出一种算法,该算法可以计算系统Ax = b的特解向量x∈Kmx1,或者产生一个不一致证书向量u∈K1xn,使得uA = 0且ub≠0。线性解算器最多检查A的r + 1行和r列,运行时间为2r3 + (r2 + n + m + | r | + |C|)1+o(1)次字段操作,其中| r |和|C|分别是检查的行和列中的非零条目的数量。求解器是拉斯维加斯类型的随机化:永远不会返回不正确的结果,但算法可能以最多1/2的概率报告FAIL。这些成本估计是通过使用一种新的随机在线数据结构来检测线性无关的行和列来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear independence oracles and applications to rectangular and low rank linear systems
Randomized algorithms are given for linear algebra problems on an input matrix A ∈ Knxm over a field K. We give an algorithm that simultaneously computes the row and column rank profiles of A in 2r3 + (r2 + n + m + |A|)1+o(1) field operations from K, where r is the rank of A and |A| denotes the number of nonzero entries of A. Here, the +o(1) in cost estimates captures some missing log n and log m factors. The rank profiles algorithm is randomized of the Monte Carlo type: the correct answer will be returned with probability at least 1/2. Given a b ∈ Knx1, we give an algorithm that either computes a particular solution vector x ∈ Kmx1 to the system Ax = b, or produces an inconsistency certificate vector u ∈ K1xn such that uA = 0 and ub ≠ 0. The linear solver examines at most r + 1 rows and r columns of A and has running time 2r3 + (r2 + n + m + |R| + |C|)1+o(1) field operations from K, where |R| and |C| are the number of nonzero entries in the rows and columns, respectively, that are examined. The solver is randomized of the Las Vegas type: an incorrect result is never returned but the algorithm may report FAIL with probability at most 1/2. These cost estimates are achieved by making use of a novel randomized online data structure for the detection of linearly independent rows and columns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信