{"title":"\\(\\ell^{\\infty}\\) 两个经典泊松极限定理的泊松不变性原理及其在非平稳独立序列上的推广","authors":"Aladji Babacar Niang, G. Lo, Cherif Mamadou Moctar Traoré, Amadou Ball","doi":"10.16929/as/2022.3125.198","DOIUrl":null,"url":null,"abstract":"The simple Lévy Poisson process and scaled forms are explicitly constructed from partial sums of independent and identically distributed random variables and from sums of non-stationary independent random variables. For the latter, the weak limits are scaled Poisson processes. The method proposed here prepares generalizations to dependent data, to associated data in the first place.","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"\\\\(\\\\ell^{\\\\infty}\\\\) Poisson invariance principles from two classical Poisson limit theorems and extension to non-stationary independent sequences\",\"authors\":\"Aladji Babacar Niang, G. Lo, Cherif Mamadou Moctar Traoré, Amadou Ball\",\"doi\":\"10.16929/as/2022.3125.198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The simple Lévy Poisson process and scaled forms are explicitly constructed from partial sums of independent and identically distributed random variables and from sums of non-stationary independent random variables. For the latter, the weak limits are scaled Poisson processes. The method proposed here prepares generalizations to dependent data, to associated data in the first place.\",\"PeriodicalId\":430341,\"journal\":{\"name\":\"Afrika Statistika\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16929/as/2022.3125.198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/as/2022.3125.198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
\(\ell^{\infty}\) Poisson invariance principles from two classical Poisson limit theorems and extension to non-stationary independent sequences
The simple Lévy Poisson process and scaled forms are explicitly constructed from partial sums of independent and identically distributed random variables and from sums of non-stationary independent random variables. For the latter, the weak limits are scaled Poisson processes. The method proposed here prepares generalizations to dependent data, to associated data in the first place.