修正左右对称模型中作为暗物质候选者的标量场

I. Istikomah, N. Isnawati
{"title":"修正左右对称模型中作为暗物质候选者的标量场","authors":"I. Istikomah, N. Isnawati","doi":"10.21580/jnsmr.2023.9.1.17481","DOIUrl":null,"url":null,"abstract":"Dark matter is about 25% of the universe, but its existence is still a mystery. The Modified Left-Right Symmetry Model with the extension of the scalar field, is expected to explain dark matter candidate. The dark matter candidates were analyzed using the Higgs Potential and Lagrangian Yukawa to obtain information on decay and scattering interactions. The generation of dark matter can be determined by analyzing the temperature evolution of the universe, which is divided into three stages post-inflation reheating, symmetry breaking first step, and symmetry breaking second step. The analysis results show that the right-sector scalar field  can be Cold Dark Matter (CDM) candidate because it has non-relativistic characteristics, is stable, does not interact with fermions, and has an abundance of 0.004. The right-sector atom can also be a CDM candidate because it has non-relativistic characteristics, is neutral, and consists of the right nucleons and right electrons. The singlet scalar field  can be the Warm Dark Matter (WDM) candidate because it can decay into fermion, interact in the left and right sectors, is neutrally charged and does not interact with other particles electromagnetically and has an abundance of 0.003. Thus, based on the modified left-right symmetry model, the particle that can be a candidate for dark matter is the scalar field.","PeriodicalId":191192,"journal":{"name":"Journal of Natural Sciences and Mathematics Research","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalar fields as dark matter candidates in the modified left-right symmetry model\",\"authors\":\"I. Istikomah, N. Isnawati\",\"doi\":\"10.21580/jnsmr.2023.9.1.17481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dark matter is about 25% of the universe, but its existence is still a mystery. The Modified Left-Right Symmetry Model with the extension of the scalar field, is expected to explain dark matter candidate. The dark matter candidates were analyzed using the Higgs Potential and Lagrangian Yukawa to obtain information on decay and scattering interactions. The generation of dark matter can be determined by analyzing the temperature evolution of the universe, which is divided into three stages post-inflation reheating, symmetry breaking first step, and symmetry breaking second step. The analysis results show that the right-sector scalar field  can be Cold Dark Matter (CDM) candidate because it has non-relativistic characteristics, is stable, does not interact with fermions, and has an abundance of 0.004. The right-sector atom can also be a CDM candidate because it has non-relativistic characteristics, is neutral, and consists of the right nucleons and right electrons. The singlet scalar field  can be the Warm Dark Matter (WDM) candidate because it can decay into fermion, interact in the left and right sectors, is neutrally charged and does not interact with other particles electromagnetically and has an abundance of 0.003. Thus, based on the modified left-right symmetry model, the particle that can be a candidate for dark matter is the scalar field.\",\"PeriodicalId\":191192,\"journal\":{\"name\":\"Journal of Natural Sciences and Mathematics Research\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Sciences and Mathematics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21580/jnsmr.2023.9.1.17481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Sciences and Mathematics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21580/jnsmr.2023.9.1.17481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

暗物质约占宇宙的25%,但它的存在仍然是一个谜。修正的左右对称模型与标量场的扩展,有望解释暗物质候选。利用希格斯势和拉格朗日汤川对候选暗物质进行了分析,以获得衰变和散射相互作用的信息。暗物质的产生可以通过分析宇宙的温度演化来确定,宇宙的温度演化分为三个阶段,即暴胀再加热后的阶段,对称性破缺的第一步,对称性破缺的第二步。分析结果表明,右扇形标量场具有非相对论性特征,稳定,不与费米子相互作用,丰度为0.004,可以成为冷暗物质(CDM)候选者。右扇区原子也可以成为CDM候选者,因为它具有非相对论性特征,是中性的,并且由右核子和右电子组成。单重态标量场可以作为暖暗物质(WDM)的候选者,因为它可以衰变成费米子,在左右扇区相互作用,是中性带电的,不与其他粒子电磁相互作用,丰度为0.003。因此,基于修正的左右对称模型,可以作为暗物质候选者的粒子是标量场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalar fields as dark matter candidates in the modified left-right symmetry model
Dark matter is about 25% of the universe, but its existence is still a mystery. The Modified Left-Right Symmetry Model with the extension of the scalar field, is expected to explain dark matter candidate. The dark matter candidates were analyzed using the Higgs Potential and Lagrangian Yukawa to obtain information on decay and scattering interactions. The generation of dark matter can be determined by analyzing the temperature evolution of the universe, which is divided into three stages post-inflation reheating, symmetry breaking first step, and symmetry breaking second step. The analysis results show that the right-sector scalar field  can be Cold Dark Matter (CDM) candidate because it has non-relativistic characteristics, is stable, does not interact with fermions, and has an abundance of 0.004. The right-sector atom can also be a CDM candidate because it has non-relativistic characteristics, is neutral, and consists of the right nucleons and right electrons. The singlet scalar field  can be the Warm Dark Matter (WDM) candidate because it can decay into fermion, interact in the left and right sectors, is neutrally charged and does not interact with other particles electromagnetically and has an abundance of 0.003. Thus, based on the modified left-right symmetry model, the particle that can be a candidate for dark matter is the scalar field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信