软件项目经理推荐系统

Liang Wei, Luiz Fernando Capretz
{"title":"软件项目经理推荐系统","authors":"Liang Wei, Luiz Fernando Capretz","doi":"10.1145/3463274.3463951","DOIUrl":null,"url":null,"abstract":"The design of recommendation systems is based on complex information processing and big data interaction. This personalized view has evolved into a hot area in the past decade, where applications might have been proved to help for solving problem in the software development field. Therefore, with the evolvement of Recommendation System in Software Engineering (RSSE), the coordination of software projects with their stakeholders is improving. This experiment examines four open source recommender systems and implemented a customized recommender engine with two industrial-oriented packages: Lenskit and Mahout. Each of the main functions was examined and issues were identified during the experiment.","PeriodicalId":328024,"journal":{"name":"Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recommender Systems for Software Project Managers\",\"authors\":\"Liang Wei, Luiz Fernando Capretz\",\"doi\":\"10.1145/3463274.3463951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of recommendation systems is based on complex information processing and big data interaction. This personalized view has evolved into a hot area in the past decade, where applications might have been proved to help for solving problem in the software development field. Therefore, with the evolvement of Recommendation System in Software Engineering (RSSE), the coordination of software projects with their stakeholders is improving. This experiment examines four open source recommender systems and implemented a customized recommender engine with two industrial-oriented packages: Lenskit and Mahout. Each of the main functions was examined and issues were identified during the experiment.\",\"PeriodicalId\":328024,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3463274.3463951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3463274.3463951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推荐系统的设计是基于复杂信息处理和大数据交互的。在过去的十年中,这种个性化的观点已经发展成为一个热门领域,应用程序可能已经被证明可以帮助解决软件开发领域的问题。因此,随着软件工程推荐系统(RSSE)的发展,软件项目与其利益相关者之间的协调性不断提高。本实验研究了四个开源推荐系统,并使用两个面向工业的包:Lenskit和Mahout实现了一个定制的推荐引擎。在实验过程中,对每个主要功能进行了检查并确定了问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recommender Systems for Software Project Managers
The design of recommendation systems is based on complex information processing and big data interaction. This personalized view has evolved into a hot area in the past decade, where applications might have been proved to help for solving problem in the software development field. Therefore, with the evolvement of Recommendation System in Software Engineering (RSSE), the coordination of software projects with their stakeholders is improving. This experiment examines four open source recommender systems and implemented a customized recommender engine with two industrial-oriented packages: Lenskit and Mahout. Each of the main functions was examined and issues were identified during the experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信