一种适用于金属的光供电SHF RFID转发器的天线概念

Johannes Meyer, B. Geck, Ludger Overmeyer, S. Franke
{"title":"一种适用于金属的光供电SHF RFID转发器的天线概念","authors":"Johannes Meyer, B. Geck, Ludger Overmeyer, S. Franke","doi":"10.23919/EUMC.2012.6459131","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid antenna design for an optically powered super high frequency (SHF) RFID transponder applicable for the integration into metal. The key feature of the antenna is its ability to receive microwave signals at SHF for the data communication and optical signals for the power supply of the transponder. The antenna design is based on a circular waveguide which is filled with polymer optical fibers to guide light to the photodiodes to power up the transponder. Additionally a transition is placed within the circular waveguide to transfer the waveguide mode of the SHF signal into a microstrip mode which is a more suitable structure for the integration of electronic transponder components. This paper discusses the constraints and solutions for the here presented combination of SHF microwave and light. Furthermore, the gain of the antenna structure is measured and compared to the simulated one.","PeriodicalId":266910,"journal":{"name":"2012 42nd European Microwave Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An antenna concept for an optically powered SHF RFID transponder applicable into metal\",\"authors\":\"Johannes Meyer, B. Geck, Ludger Overmeyer, S. Franke\",\"doi\":\"10.23919/EUMC.2012.6459131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a hybrid antenna design for an optically powered super high frequency (SHF) RFID transponder applicable for the integration into metal. The key feature of the antenna is its ability to receive microwave signals at SHF for the data communication and optical signals for the power supply of the transponder. The antenna design is based on a circular waveguide which is filled with polymer optical fibers to guide light to the photodiodes to power up the transponder. Additionally a transition is placed within the circular waveguide to transfer the waveguide mode of the SHF signal into a microstrip mode which is a more suitable structure for the integration of electronic transponder components. This paper discusses the constraints and solutions for the here presented combination of SHF microwave and light. Furthermore, the gain of the antenna structure is measured and compared to the simulated one.\",\"PeriodicalId\":266910,\"journal\":{\"name\":\"2012 42nd European Microwave Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 42nd European Microwave Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUMC.2012.6459131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 42nd European Microwave Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMC.2012.6459131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种适用于金属集成的光供电超高频RFID应答器的混合天线设计。该天线的主要特点是能够在超高频接收微波信号用于数据通信,并为应答器供电的光信号。天线的设计是基于一个圆形波导,其中填充了聚合物光纤,将光引导到光电二极管,从而为应答器供电。此外,在圆波导内放置一个过渡以将SHF信号的波导模式转换为微带模式,微带模式是更适合集成电子应答器组件的结构。本文讨论了超高频微波与光结合的限制条件和解决方法。此外,还对天线结构的增益进行了测量,并与仿真结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An antenna concept for an optically powered SHF RFID transponder applicable into metal
This paper presents a hybrid antenna design for an optically powered super high frequency (SHF) RFID transponder applicable for the integration into metal. The key feature of the antenna is its ability to receive microwave signals at SHF for the data communication and optical signals for the power supply of the transponder. The antenna design is based on a circular waveguide which is filled with polymer optical fibers to guide light to the photodiodes to power up the transponder. Additionally a transition is placed within the circular waveguide to transfer the waveguide mode of the SHF signal into a microstrip mode which is a more suitable structure for the integration of electronic transponder components. This paper discusses the constraints and solutions for the here presented combination of SHF microwave and light. Furthermore, the gain of the antenna structure is measured and compared to the simulated one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信