网络入侵检测中的级联特征选择方法

Yong Sun, Feng Liu
{"title":"网络入侵检测中的级联特征选择方法","authors":"Yong Sun, Feng Liu","doi":"10.1109/WorldCIS.2015.7359426","DOIUrl":null,"url":null,"abstract":"Network intrusion detection research work that employed KDDCup 99 dataset often encounters challenges in creating classifiers that could handle unequal distributed attack categories. In such cases, classifier could not effectively learn the characteristics of rare categories, which will lead to a poor detection rate of rare categories. The efficiency of intrusion detection is mainly determined by the dimension of data features. According to the feature optimization selection problems of the rare attack categories detection, this paper proposes using the cascaded SVM classifiers to classify the non-rare attack categories and using BN classifiers to classify rare attack categories, combining with cascaded GFR feature selection method (CGFR). It selects feature subset for the rare attack categories and non rare attack categories respectively. The experimental results show that the CGFR method proposed in this paper can increase the detection rate of U2R and R2L to 89.4% and 49.2% respectively.","PeriodicalId":234497,"journal":{"name":"2015 World Congress on Internet Security (WorldCIS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A cascaded feature selection approach in network intrusion detection\",\"authors\":\"Yong Sun, Feng Liu\",\"doi\":\"10.1109/WorldCIS.2015.7359426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network intrusion detection research work that employed KDDCup 99 dataset often encounters challenges in creating classifiers that could handle unequal distributed attack categories. In such cases, classifier could not effectively learn the characteristics of rare categories, which will lead to a poor detection rate of rare categories. The efficiency of intrusion detection is mainly determined by the dimension of data features. According to the feature optimization selection problems of the rare attack categories detection, this paper proposes using the cascaded SVM classifiers to classify the non-rare attack categories and using BN classifiers to classify rare attack categories, combining with cascaded GFR feature selection method (CGFR). It selects feature subset for the rare attack categories and non rare attack categories respectively. The experimental results show that the CGFR method proposed in this paper can increase the detection rate of U2R and R2L to 89.4% and 49.2% respectively.\",\"PeriodicalId\":234497,\"journal\":{\"name\":\"2015 World Congress on Internet Security (WorldCIS)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 World Congress on Internet Security (WorldCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WorldCIS.2015.7359426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 World Congress on Internet Security (WorldCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WorldCIS.2015.7359426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

使用KDDCup 99数据集的网络入侵检测研究工作在创建能够处理不平等分布式攻击类别的分类器时经常遇到挑战。在这种情况下,分类器不能有效地学习稀有类别的特征,这将导致稀有类别的检测率很低。入侵检测的效率主要取决于数据特征的维度。针对罕见攻击类别检测的特征优化选择问题,结合级联GFR特征选择方法(CGFR),提出使用级联SVM分类器对非罕见攻击类别进行分类,使用BN分类器对罕见攻击类别进行分类。它分别为罕见攻击类别和非罕见攻击类别选择特征子集。实验结果表明,本文提出的CGFR方法可将U2R和R2L的检出率分别提高到89.4%和49.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cascaded feature selection approach in network intrusion detection
Network intrusion detection research work that employed KDDCup 99 dataset often encounters challenges in creating classifiers that could handle unequal distributed attack categories. In such cases, classifier could not effectively learn the characteristics of rare categories, which will lead to a poor detection rate of rare categories. The efficiency of intrusion detection is mainly determined by the dimension of data features. According to the feature optimization selection problems of the rare attack categories detection, this paper proposes using the cascaded SVM classifiers to classify the non-rare attack categories and using BN classifiers to classify rare attack categories, combining with cascaded GFR feature selection method (CGFR). It selects feature subset for the rare attack categories and non rare attack categories respectively. The experimental results show that the CGFR method proposed in this paper can increase the detection rate of U2R and R2L to 89.4% and 49.2% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信