几何约束下AUV对接时间最优路径规划方法

Zeyu Li, Weidong Liu, Li-e Gao, Le Li
{"title":"几何约束下AUV对接时间最优路径规划方法","authors":"Zeyu Li, Weidong Liu, Li-e Gao, Le Li","doi":"10.1109/OCEANSE.2019.8867060","DOIUrl":null,"url":null,"abstract":"Challenges in ocean environment bring complexities for AUV docking, including ocean currents, obstacles and geometrical constraints. This paper proposed an evolutionary- based method, to optimize the docking path. First, the ocean environment and constraints are analysed and modelled. Next, the control points are designed to satisfy the model constraints. Then, the adaptive law and mutation operator are introduced in Particle Swarm Optimization (PSO), to achieve the global time- optimization. Finally, the proposed approach is evaluated via Monte-Carlo trials, which demonstrates a significant improvement with respect to the state-of-the-art approaches.","PeriodicalId":375793,"journal":{"name":"OCEANS 2019 - Marseille","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A time-optimal path planning method for AUV docking under geometrical constraints\",\"authors\":\"Zeyu Li, Weidong Liu, Li-e Gao, Le Li\",\"doi\":\"10.1109/OCEANSE.2019.8867060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Challenges in ocean environment bring complexities for AUV docking, including ocean currents, obstacles and geometrical constraints. This paper proposed an evolutionary- based method, to optimize the docking path. First, the ocean environment and constraints are analysed and modelled. Next, the control points are designed to satisfy the model constraints. Then, the adaptive law and mutation operator are introduced in Particle Swarm Optimization (PSO), to achieve the global time- optimization. Finally, the proposed approach is evaluated via Monte-Carlo trials, which demonstrates a significant improvement with respect to the state-of-the-art approaches.\",\"PeriodicalId\":375793,\"journal\":{\"name\":\"OCEANS 2019 - Marseille\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2019 - Marseille\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSE.2019.8867060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 - Marseille","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2019.8867060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

海洋环境的挑战给AUV对接带来了复杂性,包括洋流、障碍物和几何约束。本文提出了一种基于进化的对接路径优化方法。首先,对海洋环境和制约因素进行了分析和建模。其次,设计控制点以满足模型约束。然后,在粒子群算法中引入自适应律和变异算子,实现全局时间优化。最后,通过蒙特卡洛试验对所提出的方法进行了评估,结果表明,相对于最先进的方法,该方法有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A time-optimal path planning method for AUV docking under geometrical constraints
Challenges in ocean environment bring complexities for AUV docking, including ocean currents, obstacles and geometrical constraints. This paper proposed an evolutionary- based method, to optimize the docking path. First, the ocean environment and constraints are analysed and modelled. Next, the control points are designed to satisfy the model constraints. Then, the adaptive law and mutation operator are introduced in Particle Swarm Optimization (PSO), to achieve the global time- optimization. Finally, the proposed approach is evaluated via Monte-Carlo trials, which demonstrates a significant improvement with respect to the state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信