{"title":"非平衡数据情感分析的类分解与增强","authors":"C. Moreno-García, Chrisina Jayne, Eyad Elyan","doi":"10.1109/IJCNN52387.2021.9533603","DOIUrl":null,"url":null,"abstract":"Significant progress has been made in the area of text classification and natural language processing. However, like many other datasets from across different domains, text-based datasets may suffer from class-imbalance. This problem leads to model's bias toward the majority class instances. In this paper, we present a new approach to handle class-imbalance in text data by means of unsupervised learning algorithms. We present class-decomposition using two different unsupervised methods, namely k-means and Density-Based Spatial Clustering of Applications with Noise, applied to two different sentiment analysis data sets. The experimental results show that utilizing clustering to find within-class similarities can lead to significant improvement in learning algorithm's performances as well as reducing the dominance of the majority class instances without causing information loss.","PeriodicalId":396583,"journal":{"name":"2021 International Joint Conference on Neural Networks (IJCNN)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Class-Decomposition and Augmentation for Imbalanced Data Sentiment Analysis\",\"authors\":\"C. Moreno-García, Chrisina Jayne, Eyad Elyan\",\"doi\":\"10.1109/IJCNN52387.2021.9533603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant progress has been made in the area of text classification and natural language processing. However, like many other datasets from across different domains, text-based datasets may suffer from class-imbalance. This problem leads to model's bias toward the majority class instances. In this paper, we present a new approach to handle class-imbalance in text data by means of unsupervised learning algorithms. We present class-decomposition using two different unsupervised methods, namely k-means and Density-Based Spatial Clustering of Applications with Noise, applied to two different sentiment analysis data sets. The experimental results show that utilizing clustering to find within-class similarities can lead to significant improvement in learning algorithm's performances as well as reducing the dominance of the majority class instances without causing information loss.\",\"PeriodicalId\":396583,\"journal\":{\"name\":\"2021 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN52387.2021.9533603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN52387.2021.9533603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Class-Decomposition and Augmentation for Imbalanced Data Sentiment Analysis
Significant progress has been made in the area of text classification and natural language processing. However, like many other datasets from across different domains, text-based datasets may suffer from class-imbalance. This problem leads to model's bias toward the majority class instances. In this paper, we present a new approach to handle class-imbalance in text data by means of unsupervised learning algorithms. We present class-decomposition using two different unsupervised methods, namely k-means and Density-Based Spatial Clustering of Applications with Noise, applied to two different sentiment analysis data sets. The experimental results show that utilizing clustering to find within-class similarities can lead to significant improvement in learning algorithm's performances as well as reducing the dominance of the majority class instances without causing information loss.