用向量和ASR转录本识别阿拉伯语方言

S. Malmasi, Marcos Zampieri
{"title":"用向量和ASR转录本识别阿拉伯语方言","authors":"S. Malmasi, Marcos Zampieri","doi":"10.18653/v1/W17-1222","DOIUrl":null,"url":null,"abstract":"This paper presents the systems submitted by the MAZA team to the Arabic Dialect Identification (ADI) shared task at the VarDial Evaluation Campaign 2017. The goal of the task is to evaluate computational models to identify the dialect of Arabic utterances using both audio and text transcriptions. The ADI shared task dataset included Modern Standard Arabic (MSA) and four Arabic dialects: Egyptian, Gulf, Levantine, and North-African. The three systems submitted by MAZA are based on combinations of multiple machine learning classifiers arranged as (1) voting ensemble; (2) mean probability ensemble; (3) meta-classifier. The best results were obtained by the meta-classifier achieving 71.7% accuracy, ranking second among the six teams which participated in the ADI shared task.","PeriodicalId":167439,"journal":{"name":"Workshop on NLP for Similar Languages, Varieties and Dialects","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Arabic Dialect Identification Using iVectors and ASR Transcripts\",\"authors\":\"S. Malmasi, Marcos Zampieri\",\"doi\":\"10.18653/v1/W17-1222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the systems submitted by the MAZA team to the Arabic Dialect Identification (ADI) shared task at the VarDial Evaluation Campaign 2017. The goal of the task is to evaluate computational models to identify the dialect of Arabic utterances using both audio and text transcriptions. The ADI shared task dataset included Modern Standard Arabic (MSA) and four Arabic dialects: Egyptian, Gulf, Levantine, and North-African. The three systems submitted by MAZA are based on combinations of multiple machine learning classifiers arranged as (1) voting ensemble; (2) mean probability ensemble; (3) meta-classifier. The best results were obtained by the meta-classifier achieving 71.7% accuracy, ranking second among the six teams which participated in the ADI shared task.\",\"PeriodicalId\":167439,\"journal\":{\"name\":\"Workshop on NLP for Similar Languages, Varieties and Dialects\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on NLP for Similar Languages, Varieties and Dialects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W17-1222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on NLP for Similar Languages, Varieties and Dialects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-1222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

本文介绍了MAZA团队提交给VarDial评估活动2017年阿拉伯语方言识别(ADI)共享任务的系统。该任务的目标是评估计算模型,以识别使用音频和文本转录的阿拉伯语方言。ADI共享任务数据集包括现代标准阿拉伯语(MSA)和四种阿拉伯语方言:埃及语、海湾语、黎凡特语和北非语。MAZA提交的三个系统是基于多个机器学习分类器的组合,排列为(1)投票集合;(2)平均概率系综;(3) meta-classifier。元分类器的准确率达到71.7%,在参与ADI共享任务的6个团队中排名第二。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arabic Dialect Identification Using iVectors and ASR Transcripts
This paper presents the systems submitted by the MAZA team to the Arabic Dialect Identification (ADI) shared task at the VarDial Evaluation Campaign 2017. The goal of the task is to evaluate computational models to identify the dialect of Arabic utterances using both audio and text transcriptions. The ADI shared task dataset included Modern Standard Arabic (MSA) and four Arabic dialects: Egyptian, Gulf, Levantine, and North-African. The three systems submitted by MAZA are based on combinations of multiple machine learning classifiers arranged as (1) voting ensemble; (2) mean probability ensemble; (3) meta-classifier. The best results were obtained by the meta-classifier achieving 71.7% accuracy, ranking second among the six teams which participated in the ADI shared task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信