多模态融合自定进度学习在阿尔茨海默病诊断中的应用

Ning Yuan, D. Guan, Qi Zhu, Weiwei Yuan
{"title":"多模态融合自定进度学习在阿尔茨海默病诊断中的应用","authors":"Ning Yuan, D. Guan, Qi Zhu, Weiwei Yuan","doi":"10.1109/SPAC.2017.8304253","DOIUrl":null,"url":null,"abstract":"Alzheimer's disease (AD) is a sort of nervous system disease, and it may cause amnesia and executive dysfunction etc. AD seriously reduces the quality of people's life, so it is very important to improve the diagnosis accuracy of AD in its prodromal stage, mild cognitive impairment (MCI). In recent years, multi-modal methods had been proven to be effective in prediction of AD and MCI by utilizing the complementary information across different modalities in AD data. In this paper, we propose self-paced sample weighting based low-rank representation (SPLRR) to explore the latent correlation across different modalities. By imposing rank minimization on different modalities regression coefficients, we can capture the intrinsic structure among modalities. Meanwhile, we introduce self-paced learning to allot the corresponding weight to samples based on the contribution of each sample to the label in the current modality. Experiments on the Alzheimer's disease Neuroimaging Initiative (ADNI) database show that the SPLRR model obtains the better classification performance than the state-of-the-art methods.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-paced learning for multi-modal fusion for alzheimer's disease diagnosis\",\"authors\":\"Ning Yuan, D. Guan, Qi Zhu, Weiwei Yuan\",\"doi\":\"10.1109/SPAC.2017.8304253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alzheimer's disease (AD) is a sort of nervous system disease, and it may cause amnesia and executive dysfunction etc. AD seriously reduces the quality of people's life, so it is very important to improve the diagnosis accuracy of AD in its prodromal stage, mild cognitive impairment (MCI). In recent years, multi-modal methods had been proven to be effective in prediction of AD and MCI by utilizing the complementary information across different modalities in AD data. In this paper, we propose self-paced sample weighting based low-rank representation (SPLRR) to explore the latent correlation across different modalities. By imposing rank minimization on different modalities regression coefficients, we can capture the intrinsic structure among modalities. Meanwhile, we introduce self-paced learning to allot the corresponding weight to samples based on the contribution of each sample to the label in the current modality. Experiments on the Alzheimer's disease Neuroimaging Initiative (ADNI) database show that the SPLRR model obtains the better classification performance than the state-of-the-art methods.\",\"PeriodicalId\":161647,\"journal\":{\"name\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2017.8304253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

阿尔茨海默病(AD)是一种神经系统疾病,可引起健忘症、执行功能障碍等。阿尔茨海默病严重降低了人们的生活质量,因此提高阿尔茨海默病前驱阶段轻度认知障碍(MCI)的诊断准确性非常重要。近年来,多模态方法利用AD数据中不同模态间的互补信息,有效地预测了AD和MCI。在本文中,我们提出了基于自节奏样本加权的低秩表示(SPLRR)来探索不同模式之间的潜在相关性。通过对不同模态回归系数施加秩最小化,我们可以捕获模态之间的内在结构。同时,我们引入自定节奏学习,根据当前模态中每个样本对标签的贡献为样本分配相应的权重。在阿尔茨海默病神经成像倡议(ADNI)数据库上的实验表明,SPLRR模型比目前的方法获得了更好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-paced learning for multi-modal fusion for alzheimer's disease diagnosis
Alzheimer's disease (AD) is a sort of nervous system disease, and it may cause amnesia and executive dysfunction etc. AD seriously reduces the quality of people's life, so it is very important to improve the diagnosis accuracy of AD in its prodromal stage, mild cognitive impairment (MCI). In recent years, multi-modal methods had been proven to be effective in prediction of AD and MCI by utilizing the complementary information across different modalities in AD data. In this paper, we propose self-paced sample weighting based low-rank representation (SPLRR) to explore the latent correlation across different modalities. By imposing rank minimization on different modalities regression coefficients, we can capture the intrinsic structure among modalities. Meanwhile, we introduce self-paced learning to allot the corresponding weight to samples based on the contribution of each sample to the label in the current modality. Experiments on the Alzheimer's disease Neuroimaging Initiative (ADNI) database show that the SPLRR model obtains the better classification performance than the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信