基于快速独立分量分析算法的弹道目标信号分离

Yuxi Li, Peng Li
{"title":"基于快速独立分量分析算法的弹道目标信号分离","authors":"Yuxi Li, Peng Li","doi":"10.1109/ISCTIS51085.2021.00072","DOIUrl":null,"url":null,"abstract":"In the process of modern anti-missile warfare, accurate identification of ballistic targets is crucial, and achieving the separation of target micro-Doppler curves is a key step for accurate identification. Aiming at this problem, this paper proposes a Fast-ICA algorithm to separate the micro-Doppler curves of the scattering points. According to the results of the simulation experiment, the signal is separated well, which verifies the effectiveness of the proposed algorithm.","PeriodicalId":403102,"journal":{"name":"2021 International Symposium on Computer Technology and Information Science (ISCTIS)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ballistic Target Signal Separation Based on Fast Independent Component Analysis Algorithm\",\"authors\":\"Yuxi Li, Peng Li\",\"doi\":\"10.1109/ISCTIS51085.2021.00072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the process of modern anti-missile warfare, accurate identification of ballistic targets is crucial, and achieving the separation of target micro-Doppler curves is a key step for accurate identification. Aiming at this problem, this paper proposes a Fast-ICA algorithm to separate the micro-Doppler curves of the scattering points. According to the results of the simulation experiment, the signal is separated well, which verifies the effectiveness of the proposed algorithm.\",\"PeriodicalId\":403102,\"journal\":{\"name\":\"2021 International Symposium on Computer Technology and Information Science (ISCTIS)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Computer Technology and Information Science (ISCTIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCTIS51085.2021.00072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Computer Technology and Information Science (ISCTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCTIS51085.2021.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在现代反导作战过程中,弹道目标的准确识别至关重要,实现目标微多普勒曲线的分离是实现准确识别的关键步骤。针对这一问题,本文提出了一种快速ica算法来分离散射点的微多普勒曲线。仿真实验结果表明,信号分离效果良好,验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ballistic Target Signal Separation Based on Fast Independent Component Analysis Algorithm
In the process of modern anti-missile warfare, accurate identification of ballistic targets is crucial, and achieving the separation of target micro-Doppler curves is a key step for accurate identification. Aiming at this problem, this paper proposes a Fast-ICA algorithm to separate the micro-Doppler curves of the scattering points. According to the results of the simulation experiment, the signal is separated well, which verifies the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信