输电线路雷击分类中PCA与WT滤波方法的比较:继电保护的雷击分类

J. Morales, E. Orduña, C. Rehtanz, R. Cabral, A. Bretas
{"title":"输电线路雷击分类中PCA与WT滤波方法的比较:继电保护的雷击分类","authors":"J. Morales, E. Orduña, C. Rehtanz, R. Cabral, A. Bretas","doi":"10.1109/SIPDA.2013.6729231","DOIUrl":null,"url":null,"abstract":"In this paper, a comparative study of the advantages and disadvantages of Principal Component Analysis (PCA) and Wavelet Transform (WT) based methods combined with a Artificial Neural Network (ANN) classifier for the lightning stroke classification is presented. Results show that both techniques present an acceptable performance. However, PCA technique presents some advantages with respect to the Wavelet Transform technique.","PeriodicalId":216871,"journal":{"name":"2013 International Symposium on Lightning Protection (XII SIPDA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comparison between PCA and WT filtering methods for lightning stroke classification on transmission lines: Lightning stroke classification for protection relay\",\"authors\":\"J. Morales, E. Orduña, C. Rehtanz, R. Cabral, A. Bretas\",\"doi\":\"10.1109/SIPDA.2013.6729231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a comparative study of the advantages and disadvantages of Principal Component Analysis (PCA) and Wavelet Transform (WT) based methods combined with a Artificial Neural Network (ANN) classifier for the lightning stroke classification is presented. Results show that both techniques present an acceptable performance. However, PCA technique presents some advantages with respect to the Wavelet Transform technique.\",\"PeriodicalId\":216871,\"journal\":{\"name\":\"2013 International Symposium on Lightning Protection (XII SIPDA)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Symposium on Lightning Protection (XII SIPDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPDA.2013.6729231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Symposium on Lightning Protection (XII SIPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPDA.2013.6729231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对比研究了基于主成分分析(PCA)和基于小波变换(WT)结合人工神经网络(ANN)分类器的雷击分类方法的优缺点。结果表明,这两种技术都具有可接受的性能。然而,相对于小波变换技术,主成分分析技术具有一定的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison between PCA and WT filtering methods for lightning stroke classification on transmission lines: Lightning stroke classification for protection relay
In this paper, a comparative study of the advantages and disadvantages of Principal Component Analysis (PCA) and Wavelet Transform (WT) based methods combined with a Artificial Neural Network (ANN) classifier for the lightning stroke classification is presented. Results show that both techniques present an acceptable performance. However, PCA technique presents some advantages with respect to the Wavelet Transform technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信