基于岭回归的极化空间特征提取的极化SAR分类

M. Imani
{"title":"基于岭回归的极化空间特征提取的极化SAR分类","authors":"M. Imani","doi":"10.1109/CSICC52343.2021.9420603","DOIUrl":null,"url":null,"abstract":"A polarimetric synthetic aperture radar (PolSAR) image classification is introduced in this work. The proposed method called as ridge regression-based polarimetric-spatial (RRPS) feature extraction generates polarimetric-spatial features with minimum overlapping and redundant information. To this end, each polarimetric-spatial channel of PolSAR data is represented through a ridge regression model using the farthest neighbors of that channel. The weights of the regression model compose the projection matrix for dimensionality reduction. The proposed RRPS method with a closed form solution has high performance in PolSAR image classification using small training sets.","PeriodicalId":374593,"journal":{"name":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Polarimetric SAR Classification Using Ridge Regression-Based Polarimetric-Spatial Feature Extraction\",\"authors\":\"M. Imani\",\"doi\":\"10.1109/CSICC52343.2021.9420603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A polarimetric synthetic aperture radar (PolSAR) image classification is introduced in this work. The proposed method called as ridge regression-based polarimetric-spatial (RRPS) feature extraction generates polarimetric-spatial features with minimum overlapping and redundant information. To this end, each polarimetric-spatial channel of PolSAR data is represented through a ridge regression model using the farthest neighbors of that channel. The weights of the regression model compose the projection matrix for dimensionality reduction. The proposed RRPS method with a closed form solution has high performance in PolSAR image classification using small training sets.\",\"PeriodicalId\":374593,\"journal\":{\"name\":\"2021 26th International Computer Conference, Computer Society of Iran (CSICC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 26th International Computer Conference, Computer Society of Iran (CSICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICC52343.2021.9420603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICC52343.2021.9420603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

介绍了一种偏振合成孔径雷达(PolSAR)图像分类方法。提出了一种基于脊回归的极化空间特征提取方法,以最小的重叠和冗余信息生成极化空间特征。为此,PolSAR数据的每个极化空间通道通过脊回归模型表示,该模型使用该通道的最远邻居。回归模型的权重组成投影矩阵进行降维。基于封闭形式解的RRPS方法在使用小训练集的PolSAR图像分类中具有较高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polarimetric SAR Classification Using Ridge Regression-Based Polarimetric-Spatial Feature Extraction
A polarimetric synthetic aperture radar (PolSAR) image classification is introduced in this work. The proposed method called as ridge regression-based polarimetric-spatial (RRPS) feature extraction generates polarimetric-spatial features with minimum overlapping and redundant information. To this end, each polarimetric-spatial channel of PolSAR data is represented through a ridge regression model using the farthest neighbors of that channel. The weights of the regression model compose the projection matrix for dimensionality reduction. The proposed RRPS method with a closed form solution has high performance in PolSAR image classification using small training sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信