带细胞分裂的组织P系统求解多维0-1背包问题

Juanjuan He, Z. Miao, Zheng Zhang, Xiaolong Shi
{"title":"带细胞分裂的组织P系统求解多维0-1背包问题","authors":"Juanjuan He, Z. Miao, Zheng Zhang, Xiaolong Shi","doi":"10.1109/BICTA.2009.5338106","DOIUrl":null,"url":null,"abstract":"Tissue P systems with cell division are biologically inspired theoretical models of distributed and parallel computing, which provide the possibility to solve computationally hard problems in polynomial time. In this paper, we present a semi-uniform solution to the multidimensional 0–1 knapsack problem by such kind of devices, which is linear in terms of the number of variables, the number of constraint inequalities, and all coefficients related with variables.","PeriodicalId":161787,"journal":{"name":"2009 Fourth International on Conference on Bio-Inspired Computing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Solving multidimensional 0–1 knapsack problem by tissue P systems with cell division\",\"authors\":\"Juanjuan He, Z. Miao, Zheng Zhang, Xiaolong Shi\",\"doi\":\"10.1109/BICTA.2009.5338106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tissue P systems with cell division are biologically inspired theoretical models of distributed and parallel computing, which provide the possibility to solve computationally hard problems in polynomial time. In this paper, we present a semi-uniform solution to the multidimensional 0–1 knapsack problem by such kind of devices, which is linear in terms of the number of variables, the number of constraint inequalities, and all coefficients related with variables.\",\"PeriodicalId\":161787,\"journal\":{\"name\":\"2009 Fourth International on Conference on Bio-Inspired Computing\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fourth International on Conference on Bio-Inspired Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2009.5338106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International on Conference on Bio-Inspired Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2009.5338106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

具有细胞分裂的组织P系统是受分布式并行计算的生物学启发的理论模型,它提供了在多项式时间内解决计算难题的可能性。本文利用这类装置给出了多维0-1背包问题的半一致解,该解在变量数、约束不等式数和所有与变量相关的系数方面都是线性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving multidimensional 0–1 knapsack problem by tissue P systems with cell division
Tissue P systems with cell division are biologically inspired theoretical models of distributed and parallel computing, which provide the possibility to solve computationally hard problems in polynomial time. In this paper, we present a semi-uniform solution to the multidimensional 0–1 knapsack problem by such kind of devices, which is linear in terms of the number of variables, the number of constraint inequalities, and all coefficients related with variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信