不确定性模型在冠状动脉疾病应激心电图分类中的应用

S. Arafat, M. Dohrmann, M. Skubic
{"title":"不确定性模型在冠状动脉疾病应激心电图分类中的应用","authors":"S. Arafat, M. Dohrmann, M. Skubic","doi":"10.1109/CIMA.2005.1662362","DOIUrl":null,"url":null,"abstract":"This paper discusses the use of combined uncertainty methods in the diagnosis of coronary artery disease using ECG stress signals. Combined uncertainty computes a composite of two types of uncertainties, fuzzy and probabilistic. First, we introduce basic definitions for fuzzy and probabilistic uncertainty types. Next, the ECG analysis problem is discussed in the context of classifying ECG signals using traditional methods. Three examples of models that compute fuzzy, probabilistic, and combined uncertainty models are introduced in the next section. Our experimental results show that models developed by combined uncertainty produce better results, in terms of ECG signals correct classification percentage, compared to those computed using only fuzzy or probabilistic uncertainty","PeriodicalId":306045,"journal":{"name":"2005 ICSC Congress on Computational Intelligence Methods and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Classification of coronary artery disease stress ECGs using uncertainty modeling\",\"authors\":\"S. Arafat, M. Dohrmann, M. Skubic\",\"doi\":\"10.1109/CIMA.2005.1662362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the use of combined uncertainty methods in the diagnosis of coronary artery disease using ECG stress signals. Combined uncertainty computes a composite of two types of uncertainties, fuzzy and probabilistic. First, we introduce basic definitions for fuzzy and probabilistic uncertainty types. Next, the ECG analysis problem is discussed in the context of classifying ECG signals using traditional methods. Three examples of models that compute fuzzy, probabilistic, and combined uncertainty models are introduced in the next section. Our experimental results show that models developed by combined uncertainty produce better results, in terms of ECG signals correct classification percentage, compared to those computed using only fuzzy or probabilistic uncertainty\",\"PeriodicalId\":306045,\"journal\":{\"name\":\"2005 ICSC Congress on Computational Intelligence Methods and Applications\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 ICSC Congress on Computational Intelligence Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMA.2005.1662362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 ICSC Congress on Computational Intelligence Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMA.2005.1662362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

本文讨论了联合不确定性方法在心电应激信号诊断冠状动脉疾病中的应用。组合不确定性计算两种类型的不确定性,模糊和概率的组合。首先,我们介绍了模糊和概率不确定性类型的基本定义。其次,在使用传统方法对心电信号进行分类的背景下,讨论了心电分析问题。下一节将介绍计算模糊、概率和组合不确定性模型的三个模型示例。我们的实验结果表明,与仅使用模糊或概率不确定性计算的模型相比,结合不确定性开发的模型在心电信号正确分类百分比方面产生了更好的结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of coronary artery disease stress ECGs using uncertainty modeling
This paper discusses the use of combined uncertainty methods in the diagnosis of coronary artery disease using ECG stress signals. Combined uncertainty computes a composite of two types of uncertainties, fuzzy and probabilistic. First, we introduce basic definitions for fuzzy and probabilistic uncertainty types. Next, the ECG analysis problem is discussed in the context of classifying ECG signals using traditional methods. Three examples of models that compute fuzzy, probabilistic, and combined uncertainty models are introduced in the next section. Our experimental results show that models developed by combined uncertainty produce better results, in terms of ECG signals correct classification percentage, compared to those computed using only fuzzy or probabilistic uncertainty
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信