自发面部表情识别:基于局部的方法

N. Perveen, Dinesh Singh, C. Mohan
{"title":"自发面部表情识别:基于局部的方法","authors":"N. Perveen, Dinesh Singh, C. Mohan","doi":"10.1109/ICMLA.2016.0147","DOIUrl":null,"url":null,"abstract":"A part-based approach for spontaneous expression recognition using audio-visual feature and deep convolution neural network (DCNN) is proposed. The ability of convolution neural network to handle variations in translation and scale is exploited for extracting visual features. The sub-regions, namely, eye and mouth parts extracted from the video faces are given as an input to the deep CNN (DCNN) inorder to extract convnet features. The audio features, namely, voice-report, voice intensity, and other prosodic features are used to obtain complementary information useful for classification. The confidence scores of the classifier trained on different facial parts and audio information are combined using different fusion rules for recognizing expressions. The effectiveness of the proposed approach is demonstrated on acted facial expression in wild (AFEW) dataset.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Spontaneous Facial Expression Recognition: A Part Based Approach\",\"authors\":\"N. Perveen, Dinesh Singh, C. Mohan\",\"doi\":\"10.1109/ICMLA.2016.0147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A part-based approach for spontaneous expression recognition using audio-visual feature and deep convolution neural network (DCNN) is proposed. The ability of convolution neural network to handle variations in translation and scale is exploited for extracting visual features. The sub-regions, namely, eye and mouth parts extracted from the video faces are given as an input to the deep CNN (DCNN) inorder to extract convnet features. The audio features, namely, voice-report, voice intensity, and other prosodic features are used to obtain complementary information useful for classification. The confidence scores of the classifier trained on different facial parts and audio information are combined using different fusion rules for recognizing expressions. The effectiveness of the proposed approach is demonstrated on acted facial expression in wild (AFEW) dataset.\",\"PeriodicalId\":356182,\"journal\":{\"name\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2016.0147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

提出了一种基于听觉视觉特征和深度卷积神经网络(DCNN)的基于部位的自发表情识别方法。利用卷积神经网络处理平移和尺度变化的能力提取视觉特征。将从视频人脸中提取的子区域,即眼部和口部作为深度CNN (DCNN)的输入,提取卷积神经网络特征。利用语音特征,即语音报告、语音强度和其他韵律特征来获得对分类有用的补充信息。使用不同的融合规则对不同面部部位和音频信息训练的分类器置信度分数进行组合,进行表情识别。在野生(少数)面部表情数据集上验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spontaneous Facial Expression Recognition: A Part Based Approach
A part-based approach for spontaneous expression recognition using audio-visual feature and deep convolution neural network (DCNN) is proposed. The ability of convolution neural network to handle variations in translation and scale is exploited for extracting visual features. The sub-regions, namely, eye and mouth parts extracted from the video faces are given as an input to the deep CNN (DCNN) inorder to extract convnet features. The audio features, namely, voice-report, voice intensity, and other prosodic features are used to obtain complementary information useful for classification. The confidence scores of the classifier trained on different facial parts and audio information are combined using different fusion rules for recognizing expressions. The effectiveness of the proposed approach is demonstrated on acted facial expression in wild (AFEW) dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信