主成分提取技术在风云一号卫星云图处理中的应用

Zhenhui Wang, Xiaofang Pei
{"title":"主成分提取技术在风云一号卫星云图处理中的应用","authors":"Zhenhui Wang, Xiaofang Pei","doi":"10.1109/IASP.2009.5054569","DOIUrl":null,"url":null,"abstract":"Principal Component Extraction technique is employed to process cloud images from 10-channel radiometer onboard the Chinese FY-1 polar-orbiting meteorological satellites. The results suggest that the consensus technique can concentrate the prominent distribution features of the grey shades of the targets, including clouds, landform and oceans shown on the 10 channel images into a single image which can be then used as a background image in further synoptic system analysis and weather map overlapping.","PeriodicalId":143959,"journal":{"name":"2009 International Conference on Image Analysis and Signal Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application of Principal Component Extraction technique in processing cloud images from Chinese FY-1 satellite\",\"authors\":\"Zhenhui Wang, Xiaofang Pei\",\"doi\":\"10.1109/IASP.2009.5054569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principal Component Extraction technique is employed to process cloud images from 10-channel radiometer onboard the Chinese FY-1 polar-orbiting meteorological satellites. The results suggest that the consensus technique can concentrate the prominent distribution features of the grey shades of the targets, including clouds, landform and oceans shown on the 10 channel images into a single image which can be then used as a background image in further synoptic system analysis and weather map overlapping.\",\"PeriodicalId\":143959,\"journal\":{\"name\":\"2009 International Conference on Image Analysis and Signal Processing\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Image Analysis and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IASP.2009.5054569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Image Analysis and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IASP.2009.5054569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用主成分提取技术对中国风云一号极轨气象卫星10通道辐射计云图进行处理。结果表明,共识技术可以将10个通道图像中显示的云、地貌、海洋等目标的灰色阴影的显著分布特征集中到一张图像中,作为进一步天气系统分析和天气图重叠的背景图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Principal Component Extraction technique in processing cloud images from Chinese FY-1 satellite
Principal Component Extraction technique is employed to process cloud images from 10-channel radiometer onboard the Chinese FY-1 polar-orbiting meteorological satellites. The results suggest that the consensus technique can concentrate the prominent distribution features of the grey shades of the targets, including clouds, landform and oceans shown on the 10 channel images into a single image which can be then used as a background image in further synoptic system analysis and weather map overlapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信