四元数傅里叶变换三种定义之间的关系及反演公式

M. Bahri, R. Ashino
{"title":"四元数傅里叶变换三种定义之间的关系及反演公式","authors":"M. Bahri, R. Ashino","doi":"10.1109/ICWAPR48189.2019.8946455","DOIUrl":null,"url":null,"abstract":"Firstly, based on basic properties of the kernel function of the quaternion Fourier transform we derive in detail relationships among three definitions of the quaternion Fourier transforms. Secondly, based on the quaternion Fourier transform of the quaternion Gaussian function we derive an inversion formula to recovering a quaternion function from the quaternion Fourier transform.","PeriodicalId":436840,"journal":{"name":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationship Among Three Definitions Of Quaternion Fourier Transforms And Inversion Formula\",\"authors\":\"M. Bahri, R. Ashino\",\"doi\":\"10.1109/ICWAPR48189.2019.8946455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Firstly, based on basic properties of the kernel function of the quaternion Fourier transform we derive in detail relationships among three definitions of the quaternion Fourier transforms. Secondly, based on the quaternion Fourier transform of the quaternion Gaussian function we derive an inversion formula to recovering a quaternion function from the quaternion Fourier transform.\",\"PeriodicalId\":436840,\"journal\":{\"name\":\"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR48189.2019.8946455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR48189.2019.8946455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

首先,基于四元数傅里叶变换核函数的基本性质,详细推导了三种四元数傅里叶变换定义之间的关系。其次,基于四元数高斯函数的四元数傅里叶变换,导出了从四元数傅里叶变换中恢复四元数函数的反演公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relationship Among Three Definitions Of Quaternion Fourier Transforms And Inversion Formula
Firstly, based on basic properties of the kernel function of the quaternion Fourier transform we derive in detail relationships among three definitions of the quaternion Fourier transforms. Secondly, based on the quaternion Fourier transform of the quaternion Gaussian function we derive an inversion formula to recovering a quaternion function from the quaternion Fourier transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信