基于时频表示的环境声分类

Khine Zar Thwe, Nu War
{"title":"基于时频表示的环境声分类","authors":"Khine Zar Thwe, Nu War","doi":"10.1109/SNPD.2017.8022729","DOIUrl":null,"url":null,"abstract":"This paper proposes a feature extraction method for environmental sound event classification based on time-frequency representation such as spectrogram. There are three portions to perform environmental classification. Firstly, the input signal is converted into spectrogram image with time-frequency representation using short time Fourier transforms. Secondly, this spectrogram is used to extract features with local binary pattern of three different radius and neighborhood sizes. The three distinct features resulted from local binary pattern based on spectrogram are concatenated and used as one feature vector. Finally, multi support vector machine is used for classification of environmental sound event. Evaluation is tested on ESC-10 dataset.","PeriodicalId":186094,"journal":{"name":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Environmental sound classification based on time-frequency representation\",\"authors\":\"Khine Zar Thwe, Nu War\",\"doi\":\"10.1109/SNPD.2017.8022729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a feature extraction method for environmental sound event classification based on time-frequency representation such as spectrogram. There are three portions to perform environmental classification. Firstly, the input signal is converted into spectrogram image with time-frequency representation using short time Fourier transforms. Secondly, this spectrogram is used to extract features with local binary pattern of three different radius and neighborhood sizes. The three distinct features resulted from local binary pattern based on spectrogram are concatenated and used as one feature vector. Finally, multi support vector machine is used for classification of environmental sound event. Evaluation is tested on ESC-10 dataset.\",\"PeriodicalId\":186094,\"journal\":{\"name\":\"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)\",\"volume\":\"252 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNPD.2017.8022729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2017.8022729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于谱图等时频表示的环境声事件分类特征提取方法。分三部分进行环境分类。首先,利用短时傅里叶变换将输入信号转换成具有时频表示的频谱图图像。其次,利用该谱图提取具有三种不同半径和邻域大小的局部二值模式的特征;将基于谱图的局部二值模式得到的三个不同特征连接起来作为一个特征向量。最后,利用多支持向量机对环境声事件进行分类。在ESC-10数据集上进行了评价测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental sound classification based on time-frequency representation
This paper proposes a feature extraction method for environmental sound event classification based on time-frequency representation such as spectrogram. There are three portions to perform environmental classification. Firstly, the input signal is converted into spectrogram image with time-frequency representation using short time Fourier transforms. Secondly, this spectrogram is used to extract features with local binary pattern of three different radius and neighborhood sizes. The three distinct features resulted from local binary pattern based on spectrogram are concatenated and used as one feature vector. Finally, multi support vector machine is used for classification of environmental sound event. Evaluation is tested on ESC-10 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信