基于改进蚁群优化算法的移动机器人动态路径规划

Yang Liu, Jianwei Ma, Shaofei Zang, Yibo Min
{"title":"基于改进蚁群优化算法的移动机器人动态路径规划","authors":"Yang Liu, Jianwei Ma, Shaofei Zang, Yibo Min","doi":"10.1145/3375998.3376018","DOIUrl":null,"url":null,"abstract":"Aiming at the problem that the traditional ant colony algorithm (ACO) has poor solution quality in the dynamic path planning process, this paper proposes an improved ACO. Firstly, the genetic operator fused with the traditional ACO is proposed, and the genetic operation is used to expand the search space of the solution. Secondly, the fitness function is introduced in the traditional ACO and the safety distance is added. The pros and cons of the comprehensive evaluation algorithm planning path. Then, by introducing the optimization operator, the redundant nodes are eliminated and the smoothness is improved. Finally, the path planning simulation experiment is carried out in the grid map. The results show that the proposed algorithm can find a shorter and smoother in the dynamic environment path.","PeriodicalId":395773,"journal":{"name":"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dynamic Path Planning of Mobile Robot Based on Improved Ant Colony Optimization Algorithm\",\"authors\":\"Yang Liu, Jianwei Ma, Shaofei Zang, Yibo Min\",\"doi\":\"10.1145/3375998.3376018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem that the traditional ant colony algorithm (ACO) has poor solution quality in the dynamic path planning process, this paper proposes an improved ACO. Firstly, the genetic operator fused with the traditional ACO is proposed, and the genetic operation is used to expand the search space of the solution. Secondly, the fitness function is introduced in the traditional ACO and the safety distance is added. The pros and cons of the comprehensive evaluation algorithm planning path. Then, by introducing the optimization operator, the redundant nodes are eliminated and the smoothness is improved. Finally, the path planning simulation experiment is carried out in the grid map. The results show that the proposed algorithm can find a shorter and smoother in the dynamic environment path.\",\"PeriodicalId\":395773,\"journal\":{\"name\":\"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375998.3376018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375998.3376018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对传统蚁群算法在动态路径规划过程中求解质量差的问题,提出了一种改进的蚁群算法。首先,将遗传算子与传统蚁群算法融合,利用遗传算子扩展解的搜索空间;其次,在传统蚁群算法中引入适应度函数,增加安全距离;综合评价算法规划路径的利弊。然后,通过引入优化算子,消除冗余节点,提高平滑度。最后,在网格地图中进行了路径规划仿真实验。结果表明,该算法能在动态环境中找到更短、更平滑的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Path Planning of Mobile Robot Based on Improved Ant Colony Optimization Algorithm
Aiming at the problem that the traditional ant colony algorithm (ACO) has poor solution quality in the dynamic path planning process, this paper proposes an improved ACO. Firstly, the genetic operator fused with the traditional ACO is proposed, and the genetic operation is used to expand the search space of the solution. Secondly, the fitness function is introduced in the traditional ACO and the safety distance is added. The pros and cons of the comprehensive evaluation algorithm planning path. Then, by introducing the optimization operator, the redundant nodes are eliminated and the smoothness is improved. Finally, the path planning simulation experiment is carried out in the grid map. The results show that the proposed algorithm can find a shorter and smoother in the dynamic environment path.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信