可扩展的移动图像识别实时视频注释

Philipp Fleck, Clemens Arth, D. Schmalstieg
{"title":"可扩展的移动图像识别实时视频注释","authors":"Philipp Fleck, Clemens Arth, D. Schmalstieg","doi":"10.1109/ISMAR-Adjunct.2016.0110","DOIUrl":null,"url":null,"abstract":"Traditional AR frameworks for gaming and advertising focus on tracking 2D static targets. This limits the plausible use of this solutions to certain application cases like brochures or posters, but deprives their use for dynamically changing 2D targets, such as video walls or electronic billboards used in advertising.In this demo, we show how to use a rapid, fully mobile image recognition system to introduce AR in videos playing on TV sets or other dynamic screens, without the need to alter or modify the content for trackability. Our approach uses a scalable and fully mobile concept, which requires a database with a very small memory footprint on mobiles for a video or even a collection of videos.The feasibility of the approach is demonstrated on over 16 hours of video from a popular TV series, indexing into the video and giving accurate time codes and full 6DOF tracking for AR augmentations.","PeriodicalId":171967,"journal":{"name":"2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable Mobile Image Recognition for Real-Time Video Annotation\",\"authors\":\"Philipp Fleck, Clemens Arth, D. Schmalstieg\",\"doi\":\"10.1109/ISMAR-Adjunct.2016.0110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional AR frameworks for gaming and advertising focus on tracking 2D static targets. This limits the plausible use of this solutions to certain application cases like brochures or posters, but deprives their use for dynamically changing 2D targets, such as video walls or electronic billboards used in advertising.In this demo, we show how to use a rapid, fully mobile image recognition system to introduce AR in videos playing on TV sets or other dynamic screens, without the need to alter or modify the content for trackability. Our approach uses a scalable and fully mobile concept, which requires a database with a very small memory footprint on mobiles for a video or even a collection of videos.The feasibility of the approach is demonstrated on over 16 hours of video from a popular TV series, indexing into the video and giving accurate time codes and full 6DOF tracking for AR augmentations.\",\"PeriodicalId\":171967,\"journal\":{\"name\":\"2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMAR-Adjunct.2016.0110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR-Adjunct.2016.0110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用于游戏和广告的传统AR框架专注于跟踪2D静态目标。这限制了这种解决方案在某些应用案例中的合理使用,如小册子或海报,但剥夺了它们在动态变化的2D目标中的使用,如广告中使用的视频墙或电子广告牌。在这个演示中,我们展示了如何使用一个快速的、完全移动的图像识别系统,在电视或其他动态屏幕上播放的视频中引入AR,而不需要改变或修改可跟踪性的内容。我们的方法使用了可扩展和完全移动化的概念,这就需要一个在移动设备上具有非常小内存占用的数据库来存储视频或视频集合。该方法的可行性在一个流行的电视连续剧中超过16小时的视频中得到了证明,对视频进行了索引,并为AR增强提供了准确的时间代码和完整的6DOF跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Mobile Image Recognition for Real-Time Video Annotation
Traditional AR frameworks for gaming and advertising focus on tracking 2D static targets. This limits the plausible use of this solutions to certain application cases like brochures or posters, but deprives their use for dynamically changing 2D targets, such as video walls or electronic billboards used in advertising.In this demo, we show how to use a rapid, fully mobile image recognition system to introduce AR in videos playing on TV sets or other dynamic screens, without the need to alter or modify the content for trackability. Our approach uses a scalable and fully mobile concept, which requires a database with a very small memory footprint on mobiles for a video or even a collection of videos.The feasibility of the approach is demonstrated on over 16 hours of video from a popular TV series, indexing into the video and giving accurate time codes and full 6DOF tracking for AR augmentations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信