利用基于社区的问答数据增加地方政府常见问题

Yohei Seki, Masaki Oguni, Sumio Fujita
{"title":"利用基于社区的问答数据增加地方政府常见问题","authors":"Yohei Seki, Masaki Oguni, Sumio Fujita","doi":"10.1145/3428757.3429137","DOIUrl":null,"url":null,"abstract":"To reduce the cost of administrative services, many local governments provide a frequently asked questions (FAQ) page on their websites that lists the questions received from local inhabitants with their official responses. The number of Q&A items posted on the FAQ page, however, will vary depending on the local government. To address this issue, we propose a method for augmenting local government FAQs by using a community-based Q&A (cQA) service. We also propose a new FAQ augmentation task to identify the regional dependence of Q&A to achieve the goal mentioned above. In our experiments, we fine-tuned the bidirectional encoder representations from transformers (BERT) model for this task, using a labeled local-government FAQ dataset. We found that the regional dependence of Q&As can be identified with high accuracy by using both the question and the answer as clues and with fine tuning for the deeper layers in BERT.","PeriodicalId":212557,"journal":{"name":"Proceedings of the 22nd International Conference on Information Integration and Web-based Applications & Services","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmentation of Local Government FAQs using Community-based Question-answering Data\",\"authors\":\"Yohei Seki, Masaki Oguni, Sumio Fujita\",\"doi\":\"10.1145/3428757.3429137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reduce the cost of administrative services, many local governments provide a frequently asked questions (FAQ) page on their websites that lists the questions received from local inhabitants with their official responses. The number of Q&A items posted on the FAQ page, however, will vary depending on the local government. To address this issue, we propose a method for augmenting local government FAQs by using a community-based Q&A (cQA) service. We also propose a new FAQ augmentation task to identify the regional dependence of Q&A to achieve the goal mentioned above. In our experiments, we fine-tuned the bidirectional encoder representations from transformers (BERT) model for this task, using a labeled local-government FAQ dataset. We found that the regional dependence of Q&As can be identified with high accuracy by using both the question and the answer as clues and with fine tuning for the deeper layers in BERT.\",\"PeriodicalId\":212557,\"journal\":{\"name\":\"Proceedings of the 22nd International Conference on Information Integration and Web-based Applications & Services\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd International Conference on Information Integration and Web-based Applications & Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3428757.3429137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3428757.3429137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了降低行政服务的成本,许多地方政府在他们的网站上提供了一个常见问题(FAQ)页面,列出了从当地居民那里收到的问题以及他们的官方回复。但是,在“常见问题解答”页面上的提问数量会根据地方自治团体的不同而有所不同。为了解决这个问题,我们提出了一种通过使用基于社区的问答(cQA)服务来增加地方政府常见问题的方法。为了实现上述目标,我们还提出了一个新的FAQ增强任务来识别问答的区域依赖性。在我们的实验中,我们使用标记的地方政府FAQ数据集,对来自变压器(BERT)模型的双向编码器表示进行了微调。我们发现,通过将问题和答案作为线索,并对BERT中的更深层进行微调,可以高精度地识别问答的区域依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Augmentation of Local Government FAQs using Community-based Question-answering Data
To reduce the cost of administrative services, many local governments provide a frequently asked questions (FAQ) page on their websites that lists the questions received from local inhabitants with their official responses. The number of Q&A items posted on the FAQ page, however, will vary depending on the local government. To address this issue, we propose a method for augmenting local government FAQs by using a community-based Q&A (cQA) service. We also propose a new FAQ augmentation task to identify the regional dependence of Q&A to achieve the goal mentioned above. In our experiments, we fine-tuned the bidirectional encoder representations from transformers (BERT) model for this task, using a labeled local-government FAQ dataset. We found that the regional dependence of Q&As can be identified with high accuracy by using both the question and the answer as clues and with fine tuning for the deeper layers in BERT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信