{"title":"徐劳德潮流发电系统多通道结构海水流动场分析","authors":"한석종, 박다인, Sang-ho Lee","doi":"10.17958/ksmt.22.1.202002.44","DOIUrl":null,"url":null,"abstract":"Numerical analysis has been carried out to analyze seawater flow field and power generation characteristics of the tidal current power generation system for various multi channel shroud systems. Geometrical multi channel arrangement largely affects the flow field characteristics in the shroud system which power generation performance through turbine blade depends on. Sectional averaged velocity in front of the turbine blade which increases more than 2 times compared with channel inlet is much influenced as well as the flow from the rear with curl. And flow variation results in high inlet velocity in horizontal arrangements of multi channels with mechanical output of the turbine. These results are expected to be used as applicable data for the development of the tidal power generation system with shrouds.","PeriodicalId":168106,"journal":{"name":"Journal of the Korean Society of Mechanical Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"쉬라우드형 조류발전 시스템의 다중 채널구조에 따른 해수유동장 분석\",\"authors\":\"한석종, 박다인, Sang-ho Lee\",\"doi\":\"10.17958/ksmt.22.1.202002.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical analysis has been carried out to analyze seawater flow field and power generation characteristics of the tidal current power generation system for various multi channel shroud systems. Geometrical multi channel arrangement largely affects the flow field characteristics in the shroud system which power generation performance through turbine blade depends on. Sectional averaged velocity in front of the turbine blade which increases more than 2 times compared with channel inlet is much influenced as well as the flow from the rear with curl. And flow variation results in high inlet velocity in horizontal arrangements of multi channels with mechanical output of the turbine. These results are expected to be used as applicable data for the development of the tidal power generation system with shrouds.\",\"PeriodicalId\":168106,\"journal\":{\"name\":\"Journal of the Korean Society of Mechanical Technology\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society of Mechanical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17958/ksmt.22.1.202002.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society of Mechanical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17958/ksmt.22.1.202002.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical analysis has been carried out to analyze seawater flow field and power generation characteristics of the tidal current power generation system for various multi channel shroud systems. Geometrical multi channel arrangement largely affects the flow field characteristics in the shroud system which power generation performance through turbine blade depends on. Sectional averaged velocity in front of the turbine blade which increases more than 2 times compared with channel inlet is much influenced as well as the flow from the rear with curl. And flow variation results in high inlet velocity in horizontal arrangements of multi channels with mechanical output of the turbine. These results are expected to be used as applicable data for the development of the tidal power generation system with shrouds.