基于深度学习和核非线性PSVM的语音情感识别

Zhiyan Han, Jian Wang
{"title":"基于深度学习和核非线性PSVM的语音情感识别","authors":"Zhiyan Han, Jian Wang","doi":"10.1109/CCDC.2019.8832414","DOIUrl":null,"url":null,"abstract":"For the sake of ameliorating the precision of speech emotion recognition, this paper put forward a new emotion recognition technique based on Deep Learning and Kernel Nonlinear PSVM (Proximal Support Vector Machine) to discern four fundamental human emotion (angry, joy, sadness, surprise). First of all, preprocess speech signal. And then use DBN (Deep Belief Networks) to extract emotional features in speech signal automatically. After that, integrate the DBN automatic features and traditional features (prosody features and quality features) as the total features. Finally, use six Nonlinear Proximal Support Vector Machines to recognize the emotion and use majority voting principle to obtain the final identification result. To assess the new method, we compare the total features, DBN automatic features and traditional features. The experimental results indicate that the total features are better than the other two methods.","PeriodicalId":254705,"journal":{"name":"2019 Chinese Control And Decision Conference (CCDC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Speech Emotion Recognition Based on Deep Learning and Kernel Nonlinear PSVM\",\"authors\":\"Zhiyan Han, Jian Wang\",\"doi\":\"10.1109/CCDC.2019.8832414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the sake of ameliorating the precision of speech emotion recognition, this paper put forward a new emotion recognition technique based on Deep Learning and Kernel Nonlinear PSVM (Proximal Support Vector Machine) to discern four fundamental human emotion (angry, joy, sadness, surprise). First of all, preprocess speech signal. And then use DBN (Deep Belief Networks) to extract emotional features in speech signal automatically. After that, integrate the DBN automatic features and traditional features (prosody features and quality features) as the total features. Finally, use six Nonlinear Proximal Support Vector Machines to recognize the emotion and use majority voting principle to obtain the final identification result. To assess the new method, we compare the total features, DBN automatic features and traditional features. The experimental results indicate that the total features are better than the other two methods.\",\"PeriodicalId\":254705,\"journal\":{\"name\":\"2019 Chinese Control And Decision Conference (CCDC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Chinese Control And Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2019.8832414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2019.8832414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了提高语音情感识别的精度,本文提出了一种基于深度学习和核非线性近端支持向量机(PSVM)的情感识别新技术,以识别人类的四种基本情感(愤怒、喜悦、悲伤、惊讶)。首先,对语音信号进行预处理。然后利用深度信念网络(Deep Belief Networks, DBN)自动提取语音信号中的情感特征。然后,将DBN自动特征和传统特征(韵律特征和质量特征)整合为总特征。最后,利用6个非线性近端支持向量机对情感进行识别,并利用多数投票原则得到最终的识别结果。为了评估新方法,我们比较了总特征、DBN自动特征和传统特征。实验结果表明,该方法的总特征值优于其他两种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech Emotion Recognition Based on Deep Learning and Kernel Nonlinear PSVM
For the sake of ameliorating the precision of speech emotion recognition, this paper put forward a new emotion recognition technique based on Deep Learning and Kernel Nonlinear PSVM (Proximal Support Vector Machine) to discern four fundamental human emotion (angry, joy, sadness, surprise). First of all, preprocess speech signal. And then use DBN (Deep Belief Networks) to extract emotional features in speech signal automatically. After that, integrate the DBN automatic features and traditional features (prosody features and quality features) as the total features. Finally, use six Nonlinear Proximal Support Vector Machines to recognize the emotion and use majority voting principle to obtain the final identification result. To assess the new method, we compare the total features, DBN automatic features and traditional features. The experimental results indicate that the total features are better than the other two methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信