自适应线性预测器的双模结构

H. Yeh, H. Tu
{"title":"自适应线性预测器的双模结构","authors":"H. Yeh, H. Tu","doi":"10.1109/ISM.2005.23","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a two-mode structure of adaptive linear predictor with application to speech coding. Initially, this structure has independently adapting low-order cascaded stages that use forward-backward linear prediction algorithm. Later, it switches to a regular transversal structure using least mean square (LMS) algorithm. This method enjoys fast convergence rate at the beginning and accurate tracking of inputs in the steady state.","PeriodicalId":322363,"journal":{"name":"Seventh IEEE International Symposium on Multimedia (ISM'05)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A two-mode structure of adaptive linear predictor\",\"authors\":\"H. Yeh, H. Tu\",\"doi\":\"10.1109/ISM.2005.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate a two-mode structure of adaptive linear predictor with application to speech coding. Initially, this structure has independently adapting low-order cascaded stages that use forward-backward linear prediction algorithm. Later, it switches to a regular transversal structure using least mean square (LMS) algorithm. This method enjoys fast convergence rate at the beginning and accurate tracking of inputs in the steady state.\",\"PeriodicalId\":322363,\"journal\":{\"name\":\"Seventh IEEE International Symposium on Multimedia (ISM'05)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Symposium on Multimedia (ISM'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2005.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Symposium on Multimedia (ISM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2005.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一种双模结构的自适应线性预测器,并将其应用于语音编码。最初,该结构具有独立适应的低阶级联级,使用正向向后线性预测算法。然后,使用最小均方(LMS)算法将其转换为规则的横向结构。该方法具有初始收敛速度快、稳态输入跟踪准确等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A two-mode structure of adaptive linear predictor
In this paper, we investigate a two-mode structure of adaptive linear predictor with application to speech coding. Initially, this structure has independently adapting low-order cascaded stages that use forward-backward linear prediction algorithm. Later, it switches to a regular transversal structure using least mean square (LMS) algorithm. This method enjoys fast convergence rate at the beginning and accurate tracking of inputs in the steady state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信