生成大数据颜色图的可证明鲁棒抽样方法

D. Thompson, Janine Bennett, Seshadhri Comandur, Ali Pinar
{"title":"生成大数据颜色图的可证明鲁棒抽样方法","authors":"D. Thompson, Janine Bennett, Seshadhri Comandur, Ali Pinar","doi":"10.1109/LDAV.2013.6675161","DOIUrl":null,"url":null,"abstract":"First impressions from initial renderings of data are crucial for directing further exploration and analysis. In most visualization systems, default colormaps are generated by simply linearly interpolating color in some space based on a value's placement between the minimum and maximum taken on by the dataset. We design a simple sampling-based method for generating colormaps that high-lights important features. We use random sampling to determine the distribution of values observed in the data. The sample size required is independent of the dataset size and only depends on certain accuracy parameters. This leads to a computationally cheap and robust algorithm for colormap generation. Our approach (1) uses perceptual color distance to produce palettes from color curves, (2) allows the user to either emphasize or de-emphasize prominent values in the data, (3) uses quantiles to map distinct colors to values based on their frequency in the dataset, and (4) supports the highlighting of either inter- or intra-mode variations in the data.","PeriodicalId":266607,"journal":{"name":"2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A provably-robust sampling method for generating colormaps of large data\",\"authors\":\"D. Thompson, Janine Bennett, Seshadhri Comandur, Ali Pinar\",\"doi\":\"10.1109/LDAV.2013.6675161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First impressions from initial renderings of data are crucial for directing further exploration and analysis. In most visualization systems, default colormaps are generated by simply linearly interpolating color in some space based on a value's placement between the minimum and maximum taken on by the dataset. We design a simple sampling-based method for generating colormaps that high-lights important features. We use random sampling to determine the distribution of values observed in the data. The sample size required is independent of the dataset size and only depends on certain accuracy parameters. This leads to a computationally cheap and robust algorithm for colormap generation. Our approach (1) uses perceptual color distance to produce palettes from color curves, (2) allows the user to either emphasize or de-emphasize prominent values in the data, (3) uses quantiles to map distinct colors to values based on their frequency in the dataset, and (4) supports the highlighting of either inter- or intra-mode variations in the data.\",\"PeriodicalId\":266607,\"journal\":{\"name\":\"2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LDAV.2013.6675161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LDAV.2013.6675161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

数据初步渲染的第一印象对于指导进一步的探索和分析至关重要。在大多数可视化系统中,默认颜色映射是通过简单地基于数据集最小值和最大值之间的值位置在某些空间中线性插值颜色来生成的。我们设计了一个简单的基于采样的方法来生成突出重要特征的颜色图。我们使用随机抽样来确定在数据中观察到的值的分布。所需的样本量与数据集大小无关,仅取决于某些精度参数。这导致了一种计算成本低且鲁棒的颜色图生成算法。我们的方法(1)使用感知颜色距离从颜色曲线生成调色板,(2)允许用户强调或不强调数据中的突出值,(3)使用分位数根据数据集中的频率将不同的颜色映射到值,以及(4)支持突出显示数据中的模式间或模式内变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A provably-robust sampling method for generating colormaps of large data
First impressions from initial renderings of data are crucial for directing further exploration and analysis. In most visualization systems, default colormaps are generated by simply linearly interpolating color in some space based on a value's placement between the minimum and maximum taken on by the dataset. We design a simple sampling-based method for generating colormaps that high-lights important features. We use random sampling to determine the distribution of values observed in the data. The sample size required is independent of the dataset size and only depends on certain accuracy parameters. This leads to a computationally cheap and robust algorithm for colormap generation. Our approach (1) uses perceptual color distance to produce palettes from color curves, (2) allows the user to either emphasize or de-emphasize prominent values in the data, (3) uses quantiles to map distinct colors to values based on their frequency in the dataset, and (4) supports the highlighting of either inter- or intra-mode variations in the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信