高维关联射影几何的机械化,一种组合方法

P. Schreck, Nicolas Magaud, David Braun
{"title":"高维关联射影几何的机械化,一种组合方法","authors":"P. Schreck, Nicolas Magaud, David Braun","doi":"10.4204/EPTCS.352.8","DOIUrl":null,"url":null,"abstract":"Several tools have been developed to enhance automation of theorem proving in the 2D plane. However, in 3D, only a few approaches have been studied, and to our knowledge, nothing has been done in higher dimensions. In this paper, we present a few examples of incidence geometry theorems in dimensions 3, 4, and 5. We then prove them with the help of a combinatorial prover based on matroid theory applied to geometry.","PeriodicalId":127390,"journal":{"name":"Automated Deduction in Geometry","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanization of Incidence Projective Geometry in Higher Dimensions, a Combinatorial Approach\",\"authors\":\"P. Schreck, Nicolas Magaud, David Braun\",\"doi\":\"10.4204/EPTCS.352.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several tools have been developed to enhance automation of theorem proving in the 2D plane. However, in 3D, only a few approaches have been studied, and to our knowledge, nothing has been done in higher dimensions. In this paper, we present a few examples of incidence geometry theorems in dimensions 3, 4, and 5. We then prove them with the help of a combinatorial prover based on matroid theory applied to geometry.\",\"PeriodicalId\":127390,\"journal\":{\"name\":\"Automated Deduction in Geometry\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automated Deduction in Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.352.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Deduction in Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.352.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

已经开发了一些工具来增强二维平面上定理证明的自动化。然而,在3D中,只有少数方法被研究过,据我们所知,在更高的维度中还没有做过任何事情。本文给出了3、4、5维的关联几何定理的几个例子。然后,我们将矩阵理论应用于几何,利用组合证明法对它们进行了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanization of Incidence Projective Geometry in Higher Dimensions, a Combinatorial Approach
Several tools have been developed to enhance automation of theorem proving in the 2D plane. However, in 3D, only a few approaches have been studied, and to our knowledge, nothing has been done in higher dimensions. In this paper, we present a few examples of incidence geometry theorems in dimensions 3, 4, and 5. We then prove them with the help of a combinatorial prover based on matroid theory applied to geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信