基于卷积神经网络的图像快速缺陷检测与分类

P. Warren, Hessein Ali, Hossein Ebrahimi, Hossein Ebrahimi
{"title":"基于卷积神经网络的图像快速缺陷检测与分类","authors":"P. Warren, Hessein Ali, Hossein Ebrahimi, Hossein Ebrahimi","doi":"10.1115/gt2021-59801","DOIUrl":null,"url":null,"abstract":"\n Several image processing methods have been implemented over recent years to assist and partially replace on-site technician visual inspection of both manufactured parts and operational equipments. Convolutional neural networks (CNNs) have seen great success in their ability to both identify and classify anomalies within images, in some cases they do this to a higher degree of accuracy than an expert human. Several parts that are manufactured for various aspects of turbomachinery operation must undergo a visual inspection prior to qualification. Machine learning techniques can streamline these visual inspection processes and increase both efficiency and accuracy of defect detection and classification. The adoption of CNNs to manufactured part inspection can also help to improve manufacturing methods by rapidly retrieving data for overall system improvement. In this work a dataset of images with a variety of surface defects and some without defects will be fed through varying CNN set-ups for the rapid identification and classification of the flaws within the images. This work will examine the techniques used to create CNNs and how they can best be applied to part surface image data, and determine the most accurate and efficient techniques that should be implemented. By combining machine learning with non-destructive evaluation methods component health can be rapidly determined and create a more robust system for manufactured parts and operational equipment evaluation.","PeriodicalId":169840,"journal":{"name":"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Rapid Defect Detection and Classification in Images Using Convolutional Neural Networks\",\"authors\":\"P. Warren, Hessein Ali, Hossein Ebrahimi, Hossein Ebrahimi\",\"doi\":\"10.1115/gt2021-59801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Several image processing methods have been implemented over recent years to assist and partially replace on-site technician visual inspection of both manufactured parts and operational equipments. Convolutional neural networks (CNNs) have seen great success in their ability to both identify and classify anomalies within images, in some cases they do this to a higher degree of accuracy than an expert human. Several parts that are manufactured for various aspects of turbomachinery operation must undergo a visual inspection prior to qualification. Machine learning techniques can streamline these visual inspection processes and increase both efficiency and accuracy of defect detection and classification. The adoption of CNNs to manufactured part inspection can also help to improve manufacturing methods by rapidly retrieving data for overall system improvement. In this work a dataset of images with a variety of surface defects and some without defects will be fed through varying CNN set-ups for the rapid identification and classification of the flaws within the images. This work will examine the techniques used to create CNNs and how they can best be applied to part surface image data, and determine the most accurate and efficient techniques that should be implemented. By combining machine learning with non-destructive evaluation methods component health can be rapidly determined and create a more robust system for manufactured parts and operational equipment evaluation.\",\"PeriodicalId\":169840,\"journal\":{\"name\":\"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-59801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations: Energy Storage; Education; Electric Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-59801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来已经实施了几种图像处理方法,以协助和部分取代现场技术人员对制造零件和操作设备的视觉检查。卷积神经网络(cnn)在识别和分类图像中的异常方面取得了巨大的成功,在某些情况下,它们比专家的准确率更高。为涡轮机械运行的各个方面而制造的几个部件在获得资格之前必须经过目视检查。机器学习技术可以简化这些视觉检测过程,提高缺陷检测和分类的效率和准确性。采用cnn对制造零件的检测也可以通过快速检索数据来改进制造方法,从而改进整个系统。在这项工作中,有各种表面缺陷和一些没有缺陷的图像数据集将通过不同的CNN设置进行馈送,以便快速识别和分类图像中的缺陷。这项工作将研究用于创建cnn的技术,以及如何将它们最好地应用于零件表面图像数据,并确定应该实施的最准确和最有效的技术。通过将机器学习与非破坏性评估方法相结合,可以快速确定部件健康状况,并为制造部件和运行设备评估创建更强大的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid Defect Detection and Classification in Images Using Convolutional Neural Networks
Several image processing methods have been implemented over recent years to assist and partially replace on-site technician visual inspection of both manufactured parts and operational equipments. Convolutional neural networks (CNNs) have seen great success in their ability to both identify and classify anomalies within images, in some cases they do this to a higher degree of accuracy than an expert human. Several parts that are manufactured for various aspects of turbomachinery operation must undergo a visual inspection prior to qualification. Machine learning techniques can streamline these visual inspection processes and increase both efficiency and accuracy of defect detection and classification. The adoption of CNNs to manufactured part inspection can also help to improve manufacturing methods by rapidly retrieving data for overall system improvement. In this work a dataset of images with a variety of surface defects and some without defects will be fed through varying CNN set-ups for the rapid identification and classification of the flaws within the images. This work will examine the techniques used to create CNNs and how they can best be applied to part surface image data, and determine the most accurate and efficient techniques that should be implemented. By combining machine learning with non-destructive evaluation methods component health can be rapidly determined and create a more robust system for manufactured parts and operational equipment evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信