基于神经网络的单幅图像超分辨率

N. Kumar, P. Deswal, J. Mehta, A. Sethi
{"title":"基于神经网络的单幅图像超分辨率","authors":"N. Kumar, P. Deswal, J. Mehta, A. Sethi","doi":"10.1109/NEUREL.2012.6420014","DOIUrl":null,"url":null,"abstract":"In this paper a novel learning based technique for single image super resolution (SR) is proposed. We model the relationship between available low resolution (LR) image and desired high resolution (HR) image as multi-scale markov random field (MSMRF). We re-formulate the SR problem in terms of learning the mapping between LR-MRF and HR-MRF, which is generally non-linear. Instead of learning MSMRF parameters we use artificial neural networks to learn the desired mapping. The results compare favorably to more complex stat-of-the art techniques for 2 × 2 and 3 × 3 SR problem. We solve the SR problem using optical zoom as a cue by the proposed algorithm as well. The results on experiments with real data are presented.","PeriodicalId":343718,"journal":{"name":"11th Symposium on Neural Network Applications in Electrical Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Neural network based single image super resolution\",\"authors\":\"N. Kumar, P. Deswal, J. Mehta, A. Sethi\",\"doi\":\"10.1109/NEUREL.2012.6420014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a novel learning based technique for single image super resolution (SR) is proposed. We model the relationship between available low resolution (LR) image and desired high resolution (HR) image as multi-scale markov random field (MSMRF). We re-formulate the SR problem in terms of learning the mapping between LR-MRF and HR-MRF, which is generally non-linear. Instead of learning MSMRF parameters we use artificial neural networks to learn the desired mapping. The results compare favorably to more complex stat-of-the art techniques for 2 × 2 and 3 × 3 SR problem. We solve the SR problem using optical zoom as a cue by the proposed algorithm as well. The results on experiments with real data are presented.\",\"PeriodicalId\":343718,\"journal\":{\"name\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2012.6420014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2012.6420014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种新的基于学习的单幅图像超分辨技术。我们将可用的低分辨率(LR)图像与期望的高分辨率(HR)图像之间的关系建模为多尺度马尔可夫随机场(MSMRF)。我们通过学习LR-MRF和HR-MRF之间的映射来重新表述SR问题,这通常是非线性的。我们使用人工神经网络来学习所需的映射,而不是学习MSMRF参数。结果与更复杂的2 × 2和3 × 3 SR问题的最先进技术相比较有利。该算法还解决了以光学变焦为线索的SR问题。给出了实际数据的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network based single image super resolution
In this paper a novel learning based technique for single image super resolution (SR) is proposed. We model the relationship between available low resolution (LR) image and desired high resolution (HR) image as multi-scale markov random field (MSMRF). We re-formulate the SR problem in terms of learning the mapping between LR-MRF and HR-MRF, which is generally non-linear. Instead of learning MSMRF parameters we use artificial neural networks to learn the desired mapping. The results compare favorably to more complex stat-of-the art techniques for 2 × 2 and 3 × 3 SR problem. We solve the SR problem using optical zoom as a cue by the proposed algorithm as well. The results on experiments with real data are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信