S. Sedighi, R. B. S. Mysore, S. Maleki, B. Ottersten
{"title":"基于稀疏感知的异步MIMO雷达多目标定位","authors":"S. Sedighi, R. B. S. Mysore, S. Maleki, B. Ottersten","doi":"10.1109/CAMSAP.2017.8313198","DOIUrl":null,"url":null,"abstract":"Multi-target localization, warranted in emerging applications like autonomous driving, requires targets to be perfectly detected in the distributed nodes with accurate range measurements. This implies that high range resolution is crucial in distributed localization in the considered scenario. This work proposes a new framework for multi-target localization, addressing the demand for the high range resolution in automotive applications without increasing the required bandwidth. In particular, it employs sparse stepped frequency waveform and infers the target ranges by exploiting sparsity in target scene. The range measurements are then sent to a fusion center where direction of arrival estimation is undertaken. Numerical results illustrate the impact of range resolution on multi-target localization and the performance improvement arising from the proposed algorithm in such scenarios.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Target localization in asynchronous MIMO radars using sparse sensing\",\"authors\":\"S. Sedighi, R. B. S. Mysore, S. Maleki, B. Ottersten\",\"doi\":\"10.1109/CAMSAP.2017.8313198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-target localization, warranted in emerging applications like autonomous driving, requires targets to be perfectly detected in the distributed nodes with accurate range measurements. This implies that high range resolution is crucial in distributed localization in the considered scenario. This work proposes a new framework for multi-target localization, addressing the demand for the high range resolution in automotive applications without increasing the required bandwidth. In particular, it employs sparse stepped frequency waveform and infers the target ranges by exploiting sparsity in target scene. The range measurements are then sent to a fusion center where direction of arrival estimation is undertaken. Numerical results illustrate the impact of range resolution on multi-target localization and the performance improvement arising from the proposed algorithm in such scenarios.\",\"PeriodicalId\":315977,\"journal\":{\"name\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMSAP.2017.8313198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Target localization in asynchronous MIMO radars using sparse sensing
Multi-target localization, warranted in emerging applications like autonomous driving, requires targets to be perfectly detected in the distributed nodes with accurate range measurements. This implies that high range resolution is crucial in distributed localization in the considered scenario. This work proposes a new framework for multi-target localization, addressing the demand for the high range resolution in automotive applications without increasing the required bandwidth. In particular, it employs sparse stepped frequency waveform and infers the target ranges by exploiting sparsity in target scene. The range measurements are then sent to a fusion center where direction of arrival estimation is undertaken. Numerical results illustrate the impact of range resolution on multi-target localization and the performance improvement arising from the proposed algorithm in such scenarios.