随机矢量在任意波动情况下的极坐标的解析描述

S. Chabdarov, A. A. Korobkov
{"title":"随机矢量在任意波动情况下的极坐标的解析描述","authors":"S. Chabdarov, A. A. Korobkov","doi":"10.1109/ICATT.2017.7972663","DOIUrl":null,"url":null,"abstract":"There are many tasks where analytical description of the random signals is used. For instance, representation of signals and waves in polar coordinates is widely used in antenna theory and techniques. In this report, we present the results of implementation of the polygaussian approach for describing polar coordinates of random vectors as mixtures of Rayleigh and Rice distributions. Moreover, polygaussian approach gives an opportunity to generalize it to the case of multidimensional vectors.","PeriodicalId":321624,"journal":{"name":"2017 XI International Conference on Antenna Theory and Techniques (ICATT)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical description of polar coordinates of random vectors in case of arbitrary fluctuations its Cartesian coordinates\",\"authors\":\"S. Chabdarov, A. A. Korobkov\",\"doi\":\"10.1109/ICATT.2017.7972663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many tasks where analytical description of the random signals is used. For instance, representation of signals and waves in polar coordinates is widely used in antenna theory and techniques. In this report, we present the results of implementation of the polygaussian approach for describing polar coordinates of random vectors as mixtures of Rayleigh and Rice distributions. Moreover, polygaussian approach gives an opportunity to generalize it to the case of multidimensional vectors.\",\"PeriodicalId\":321624,\"journal\":{\"name\":\"2017 XI International Conference on Antenna Theory and Techniques (ICATT)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 XI International Conference on Antenna Theory and Techniques (ICATT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICATT.2017.7972663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XI International Conference on Antenna Theory and Techniques (ICATT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICATT.2017.7972663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有许多任务需要对随机信号进行分析描述。例如,信号和波的极坐标表示在天线理论和技术中被广泛使用。在本报告中,我们提出了将随机向量的极坐标描述为瑞利分布和赖斯分布的混合物的多高斯方法的实现结果。此外,多高斯方法提供了将其推广到多维向量的情况的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical description of polar coordinates of random vectors in case of arbitrary fluctuations its Cartesian coordinates
There are many tasks where analytical description of the random signals is used. For instance, representation of signals and waves in polar coordinates is widely used in antenna theory and techniques. In this report, we present the results of implementation of the polygaussian approach for describing polar coordinates of random vectors as mixtures of Rayleigh and Rice distributions. Moreover, polygaussian approach gives an opportunity to generalize it to the case of multidimensional vectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信