{"title":"关于Lambert W函数作为x·log(x)的逆函数的一些反思","authors":"U. Tamm","doi":"10.1109/ITA.2014.6804273","DOIUrl":null,"url":null,"abstract":"The Lambert W function fulfills W(y)· eW(y) = y. With the choice y = log (x) it can hence be applied to invert the function f (x) = x · log(x), which is of some interest in the problems discussed. Further applications of the Lambert W function in information theory are briefly surveyed.","PeriodicalId":338302,"journal":{"name":"2014 Information Theory and Applications Workshop (ITA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Some refelections about the Lambert W function as inverse of x · log(x)\",\"authors\":\"U. Tamm\",\"doi\":\"10.1109/ITA.2014.6804273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lambert W function fulfills W(y)· eW(y) = y. With the choice y = log (x) it can hence be applied to invert the function f (x) = x · log(x), which is of some interest in the problems discussed. Further applications of the Lambert W function in information theory are briefly surveyed.\",\"PeriodicalId\":338302,\"journal\":{\"name\":\"2014 Information Theory and Applications Workshop (ITA)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2014.6804273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2014.6804273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Some refelections about the Lambert W function as inverse of x · log(x)
The Lambert W function fulfills W(y)· eW(y) = y. With the choice y = log (x) it can hence be applied to invert the function f (x) = x · log(x), which is of some interest in the problems discussed. Further applications of the Lambert W function in information theory are briefly surveyed.