右截尾生存时间数据的贝叶斯分析

A. A. Abiodun
{"title":"右截尾生存时间数据的贝叶斯分析","authors":"A. A. Abiodun","doi":"10.4314/gjmas.v8i1.50809","DOIUrl":null,"url":null,"abstract":"We analyzed cancer data using Fully Bayesian inference approach based on Markov Chain Monte Carlo (MCMC) simulation technique which allows the estimation of very complex and realistic models. The results show that sex and age are significant risk factors for dying from some selected cancers. The risk of dying from these cancers is observed to progressively increase as age of patients increases. It is also observed that in order to allow for nonlinearity due to metrical covariate age, the semiparametric P-splines model is better than the model that categorizes age into various age groups.","PeriodicalId":126381,"journal":{"name":"Global Journal of Mathematical Sciences","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian analysis of right censored survival time data\",\"authors\":\"A. A. Abiodun\",\"doi\":\"10.4314/gjmas.v8i1.50809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyzed cancer data using Fully Bayesian inference approach based on Markov Chain Monte Carlo (MCMC) simulation technique which allows the estimation of very complex and realistic models. The results show that sex and age are significant risk factors for dying from some selected cancers. The risk of dying from these cancers is observed to progressively increase as age of patients increases. It is also observed that in order to allow for nonlinearity due to metrical covariate age, the semiparametric P-splines model is better than the model that categorizes age into various age groups.\",\"PeriodicalId\":126381,\"journal\":{\"name\":\"Global Journal of Mathematical Sciences\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/gjmas.v8i1.50809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/gjmas.v8i1.50809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们使用基于马尔可夫链蒙特卡罗(MCMC)模拟技术的全贝叶斯推理方法分析癌症数据,该方法允许对非常复杂和现实的模型进行估计。结果显示,性别和年龄是某些特定癌症死亡的重要风险因素。随着患者年龄的增长,死于这些癌症的风险逐渐增加。还观察到,为了允许由于测量协变量年龄引起的非线性,半参数p样条模型比将年龄分为不同年龄组的模型更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian analysis of right censored survival time data
We analyzed cancer data using Fully Bayesian inference approach based on Markov Chain Monte Carlo (MCMC) simulation technique which allows the estimation of very complex and realistic models. The results show that sex and age are significant risk factors for dying from some selected cancers. The risk of dying from these cancers is observed to progressively increase as age of patients increases. It is also observed that in order to allow for nonlinearity due to metrical covariate age, the semiparametric P-splines model is better than the model that categorizes age into various age groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信